Suppr超能文献

深度学习在颞叶癫痫中的静息态功能磁共振成像侧化。

Deep learning resting state functional magnetic resonance imaging lateralization of temporal lobe epilepsy.

机构信息

Department of Neurological Surgery, Washington University School of Medicine, St Louis, Missouri, USA.

Department of Neurology, Washington University School of Medicine, St Louis, Missouri, USA.

出版信息

Epilepsia. 2022 Jun;63(6):1542-1552. doi: 10.1111/epi.17233. Epub 2022 Apr 1.

Abstract

OBJECTIVE

Localization of focal epilepsy is critical for surgical treatment of refractory seizures. There remains a great need for noninvasive techniques to localize seizures for surgical decision-making. We investigate the use of deep learning using resting state functional magnetic resonance imaging (RS-fMRI) to identify the hemisphere of seizure onset in temporal lobe epilepsy (TLE) patients.

METHODS

A total of 2132 healthy controls and 32 preoperative TLE patients were studied. All participants underwent structural MRI and RS-fMRI. Healthy control data were used to generate training samples for a three-dimensional convolutional neural network (3DCNN). RS-fMRI was synthetically altered in randomly lateralized regions in the healthy control participants. The model was then trained to classify the hemisphere containing synthetic noise. Finally, the model was tested on TLE patients to assess its performance for detecting biological seizure onset zones, and gradient-weighted class activation mapping (Grad-CAM) identified the strongest predictive regions.

RESULTS

The 3DCNN classified healthy control hemispheres known to contain synthetic noise with 96% accuracy, and TLE hemispheres clinically identified to be seizure onset zones with 90.6% accuracy. Grad-CAM identified a range of temporal, frontal, parietal, and subcortical regions that were strong anatomical predictors of the seizure onset zone, and the resting state networks that colocalized with Grad-CAM results included default mode, medial temporal, and dorsal attention networks. Lastly, in an analysis of a subset of patients with postsurgical outcomes, the 3DCNN leveraged a more focal set of regions to achieve classification in patients with Engel Class >I compared to Engel Class I.

SIGNIFICANCE

Noninvasive techniques capable of localizing the seizure onset zone could improve presurgical planning in patients with intractable epilepsy. We have demonstrated the ability of deep learning to identify the correct hemisphere of the seizure onset zone in TLE patients using RS-fMRI with high accuracy. This approach represents a novel technique of seizure lateralization that could improve preoperative surgical planning.

摘要

目的

局灶性癫痫的定位对于治疗耐药性癫痫的手术至关重要。对于用于手术决策的癫痫发作定位的非侵入性技术仍然存在巨大需求。我们研究了使用静息态功能磁共振成像(RS-fMRI)的深度学习来识别颞叶癫痫(TLE)患者癫痫发作的半球。

方法

共研究了 2132 名健康对照者和 32 名术前 TLE 患者。所有参与者均接受了结构 MRI 和 RS-fMRI 检查。使用健康对照者的数据生成三维卷积神经网络(3DCNN)的训练样本。在健康对照者参与者的随机侧化区域中综合改变 RS-fMRI。然后,对该模型进行训练以分类包含合成噪声的半球。最后,在 TLE 患者中测试该模型,以评估其检测生物性癫痫发作起始区的性能,梯度加权类激活映射(Grad-CAM)确定了最强的预测区域。

结果

3DCNN 以 96%的准确率对已知包含合成噪声的健康对照者的半球进行分类,以 90.6%的准确率对临床确定为癫痫发作起始区的 TLE 半球进行分类。Grad-CAM 确定了一系列颞叶、额叶、顶叶和皮质下区域,这些区域是癫痫发作起始区的强烈解剖学预测因子,与 Grad-CAM 结果共定位的静息状态网络包括默认模式、内侧颞叶和背侧注意网络。最后,在对术后结局的患者亚组的分析中,与 Engel 分级 I 相比,3DCNN 利用更集中的一组区域在 Engel 分级> I 的患者中实现分类。

意义

能够定位癫痫发作起始区的非侵入性技术可以改善耐药性癫痫患者的术前计划。我们已经证明了深度学习在使用 RS-fMRI 以高精度识别 TLE 患者癫痫发作起始区的正确半球的能力。这种方法代表了一种新的癫痫侧化技术,可能会改善术前手术计划。

相似文献

1
Deep learning resting state functional magnetic resonance imaging lateralization of temporal lobe epilepsy.
Epilepsia. 2022 Jun;63(6):1542-1552. doi: 10.1111/epi.17233. Epub 2022 Apr 1.
4
Lateralization of temporal lobe epilepsy using resting functional magnetic resonance imaging connectivity of hippocampal networks.
Epilepsia. 2012 Sep;53(9):1628-35. doi: 10.1111/j.1528-1167.2012.03590.x. Epub 2012 Jul 10.
5
Convolutional Neural Network Algorithm to Determine Lateralization of Seizure Onset in Patients With Epilepsy: A Proof-of-Principle Study.
Neurology. 2023 Jul 18;101(3):e324-e335. doi: 10.1212/WNL.0000000000207411. Epub 2023 May 18.
7
Resting state functional connectivity patterns associated with pharmacological treatment resistance in temporal lobe epilepsy.
Epilepsy Res. 2019 Jan;149:37-43. doi: 10.1016/j.eplepsyres.2018.11.002. Epub 2018 Nov 17.

引用本文的文献

1
Neural decoding of Aristotle tactile illusion using deep learning-based fMRI classification.
Front Neurosci. 2025 Jun 19;19:1606801. doi: 10.3389/fnins.2025.1606801. eCollection 2025.
2
MRI based early Temporal Lobe Epilepsy detection using DGWO based optimized HAETN and Fuzzy-AAL Segmentation Framework (FASF).
PLoS One. 2025 Jul 2;20(7):e0325126. doi: 10.1371/journal.pone.0325126. eCollection 2025.
3
Intrinsic brain network stability during kainic acid-induced epileptogenesis.
Epilepsia Open. 2025 Apr;10(2):508-520. doi: 10.1002/epi4.70002. Epub 2025 Feb 20.
4
A DEEP LEARNING FRAMEWORK TO CHARACTERIZE NOISY LABELS IN EPILEPTOGENIC ZONE LOCALIZATION USING FUNCTIONAL CONNECTIVITY.
Proc IEEE Int Symp Biomed Imaging. 2024 May;2024. doi: 10.1109/isbi56570.2024.10635583. Epub 2024 Aug 22.
6
Epileptic brain network mechanisms and neuroimaging techniques for the brain network.
Neural Regen Res. 2024 Dec 1;19(12):2637-2648. doi: 10.4103/1673-5374.391307. Epub 2023 Dec 21.
7
The expert's knowledge combined with AI outperforms AI alone in seizure onset zone localization using resting state fMRI.
Front Neurol. 2024 Jan 11;14:1324461. doi: 10.3389/fneur.2023.1324461. eCollection 2023.
9
Enhanced Dynamic Laterality Based on Functional Subnetworks in Patients with Bipolar Disorder.
Brain Sci. 2023 Nov 27;13(12):1646. doi: 10.3390/brainsci13121646.

本文引用的文献

1
Network-based atrophy modeling in the common epilepsies: A worldwide ENIGMA study.
Sci Adv. 2020 Nov 18;6(47). doi: 10.1126/sciadv.abc6457. Print 2020 Nov.
2
Resting-state functional MRI of the default mode network in epilepsy.
Epilepsy Behav. 2020 Oct;111:107308. doi: 10.1016/j.yebeh.2020.107308. Epub 2020 Jul 19.
4
Resting-state functional MRI connectivity impact on epilepsy surgery plan and surgical candidacy: prospective clinical work.
J Neurosurg Pediatr. 2020 Mar 20;25(6):574-581. doi: 10.3171/2020.1.PEDS19695. Print 2020 Jun 1.
5
Default mode network dysfunction in idiopathic generalised epilepsy.
Epilepsy Res. 2020 Jan;159:106254. doi: 10.1016/j.eplepsyres.2019.106254. Epub 2019 Dec 9.
6
The State of Resting State Networks.
Top Magn Reson Imaging. 2019 Aug;28(4):189-196. doi: 10.1097/RMR.0000000000000214.
7
Machine Learning in Medicine.
N Engl J Med. 2019 Apr 4;380(14):1347-1358. doi: 10.1056/NEJMra1814259.
8
Deep learning applied to whole-brain connectome to determine seizure control after epilepsy surgery.
Epilepsia. 2018 Sep;59(9):1643-1654. doi: 10.1111/epi.14528. Epub 2018 Aug 10.
10
Postoperative seizure freedom does not normalize altered connectivity in temporal lobe epilepsy.
Epilepsia. 2017 Nov;58(11):1842-1851. doi: 10.1111/epi.13867. Epub 2017 Aug 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验