Suppr超能文献

多重重采样互谱分析:一种用于估计分形连通性的无偏工具及其在神经生理信号中的应用

Multiple-Resampling Cross-Spectral Analysis: An Unbiased Tool for Estimating Fractal Connectivity With an Application to Neurophysiological Signals.

作者信息

Racz Frigyes Samuel, Czoch Akos, Kaposzta Zalan, Stylianou Orestis, Mukli Peter, Eke Andras

机构信息

Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary.

Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, TX, United States.

出版信息

Front Physiol. 2022 Mar 7;13:817239. doi: 10.3389/fphys.2022.817239. eCollection 2022.

Abstract

Investigating scale-free (i.e., fractal) functional connectivity in the brain has recently attracted increasing attention. Although numerous methods have been developed to assess the fractal nature of functional coupling, these typically ignore that neurophysiological signals are assemblies of broadband, arrhythmic activities as well as oscillatory activities at characteristic frequencies such as the alpha waves. While contribution of such rhythmic components may bias estimates of fractal connectivity, they are also likely to represent neural activity and coupling emerging from distinct mechanisms. Irregular-resampling auto-spectral analysis (IRASA) was recently introduced as a tool to separate fractal and oscillatory components in the power spectrum of neurophysiological signals by statistically summarizing the power spectra obtained when resampling the original signal by several non-integer factors. Here we introduce multiple-resampling cross-spectral analysis (MRCSA) as an extension of IRASA from the univariate to the bivariate case, namely, to separate the fractal component of the cross-spectrum between two simultaneously recorded neural signals by applying the same principle. MRCSA does not only provide a theoretically unbiased estimate of the fractal cross-spectrum (and thus its spectral exponent) but also allows for computing the proportion of scale-free coupling between brain regions. As a demonstration, we apply MRCSA to human electroencephalographic recordings obtained in a word generation paradigm. We show that the cross-spectral exponent as well as the proportion of fractal coupling increases almost uniformly over the cortex during the rest-task transition, likely reflecting neural desynchronization. Our results indicate that MRCSA can be a valuable tool for scale-free connectivity studies in characterizing various cognitive states, while it also can be generalized to other applications outside the field of neuroscience.

摘要

研究大脑中无标度(即分形)功能连接性最近受到了越来越多的关注。尽管已经开发出许多方法来评估功能耦合的分形性质,但这些方法通常忽略了神经生理信号是宽带、无节律活动以及特征频率(如阿尔法波)的振荡活动的集合。虽然这种节律性成分的贡献可能会使分形连接性的估计产生偏差,但它们也可能代表了由不同机制产生的神经活动和耦合。不规则重采样自谱分析(IRASA)最近被引入,作为一种通过对原始信号进行几个非整数因子重采样时获得的功率谱进行统计汇总,来分离神经生理信号功率谱中分形和振荡成分的工具。在这里,我们引入多重重采样互谱分析(MRCSA),作为IRASA从单变量情况到双变量情况的扩展,即通过应用相同原理来分离两个同时记录的神经信号之间互谱的分形成分。MRCSA不仅提供了分形互谱(以及因此其谱指数)的理论上无偏估计,还允许计算脑区之间无标度耦合的比例。作为一个演示,我们将MRCSA应用于在单词生成范式中获得的人类脑电图记录。我们表明,在静息-任务转换期间,互谱指数以及分形耦合的比例在整个皮层上几乎均匀增加,这可能反映了神经去同步化。我们的结果表明,MRCSA可以成为无标度连接性研究中表征各种认知状态的有价值工具,同时它也可以推广到神经科学领域之外的其他应用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验