Guo Qingxun, Zhao Xue, Song Boxiang, Luo Jiajun, Tang Jiang
Wuhan National Laboratory for Optoelectronics (WNLO) and School of Optical and Electronic Information, Huazhong University of Science and Technology (HUST), 1037 Luoyu Road, Wuhan, Hubei, 430074, China.
Optics Valley Laboratory, Wuhan, Hubei, 430074, China.
Adv Mater. 2022 Dec;34(52):e2201008. doi: 10.1002/adma.202201008. Epub 2022 Jun 11.
Self-trapped excitons (STEs) have recently attracted tremendous interest due to their broadband emission, high photoluminescence quantum yield, and self-absorption-free properties, which enable a large range of optoelectronic applications such as lighting, displays, radiation detection, and special sensors. Unlike free excitons, the formation of STEs requires strong coupling between excited state excitons and the soft lattice in low electronic dimensional materials. The chemical and structural diversity of metal halides provides an ideal platform for developing efficient STE emission materials. Herein, an overview of recent progress on STE emission materials for optoelectronic applications is presented. The relationships between the fundamental emission mechanisms, chemical compositions, and device performances are systematically reviewed. On this basis, currently existing challenges and possible development opportunities in this field are presented.
自陷激子(STEs)由于其宽带发射、高光致发光量子产率和无自吸收特性,近来引起了极大的关注,这些特性使得其能够应用于大范围的光电子领域,如照明、显示、辐射探测和特殊传感器。与自由激子不同,自陷激子的形成需要低维电子材料中激发态激子与软晶格之间的强耦合。金属卤化物的化学和结构多样性为开发高效自陷激子发射材料提供了理想的平台。在此,本文综述了用于光电子应用的自陷激子发射材料的最新进展。系统地回顾了基本发射机制、化学成分和器件性能之间的关系。在此基础上,提出了该领域目前存在的挑战和可能的发展机遇。