Jiang Feng, Wu Zhennan, Lu Min, Gao Yanbo, Li Xin, Bai Xue, Ji Yuan, Zhang Yu
State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China.
College of Physics, Jilin University, 2699 Qianjin Street, Changchun, 130012, P. R. China.
Adv Mater. 2023 Dec;35(51):e2211088. doi: 10.1002/adma.202211088. Epub 2023 Oct 30.
It has always been a goal to realize high efficiency and broadband emission in single-component materials. The appearance of metal halide perovskites makes it possible. Their soft lattice characteristics and significant electron-phonon coupling synergistically generate self-trapped excitons (STEs), contributing to a broadband emission with a large Stokes shift. Meanwhile, their structural/compositional diversity provides suitable active sites and coordination environments for doping of ns ions, allowing P → S transitions toward broadband emission. The ns ions emission is phenomenologically similar to that of STE emission, hindering in-depth understanding of their emission origin, and leading to failure to meet the design requirements for practical applications. In this scenario, herein, the fundamentals and development of such two emission mechanisms are summarized to establish a clear and comprehensive understanding of the broadband emission phenomenon, which may pave the way to an ideal customization of broadband-emission metal halide perovskites.
在单一组分材料中实现高效和宽带发射一直是一个目标。金属卤化物钙钛矿的出现使其成为可能。它们柔软的晶格特性和显著的电子 - 声子耦合协同产生自陷激子(STE),有助于产生具有大斯托克斯位移的宽带发射。同时,它们的结构/组成多样性为ns离子掺杂提供了合适的活性位点和配位环境,使得P→S跃迁实现宽带发射。ns离子发射在现象学上与STE发射相似,这阻碍了对其发射起源的深入理解,并导致无法满足实际应用的设计要求。在这种情况下,本文总结了这两种发射机制的基本原理和发展情况,以建立对宽带发射现象清晰而全面的理解,这可能为宽带发射金属卤化物钙钛矿的理想定制铺平道路。