Suppr超能文献

神奇而异常的蝾螈作为科学模型。

The amazing and anomalous axolotls as scientific models.

机构信息

Department of Anatomy, Physiology, and Cell Biology, UC Davis School of Veterinary Medicine, Davis, USA.

Curriculum in Toxicology & Environmental Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, USA.

出版信息

Dev Dyn. 2022 Jun;251(6):922-933. doi: 10.1002/dvdy.470. Epub 2022 Apr 1.

Abstract

Ambystoma mexicanum (axolotl) embryos and juveniles have been used as model organisms for developmental and regenerative research for many years. This neotenic aquatic species maintains the unique capability to regenerate most, if not all, of its tissues well into adulthood. With large externally developing embryos, axolotls were one of the original model species for developmental biology. However, increased access to, and use of, organisms with sequenced and annotated genomes, such as Xenopus laevis and tropicalis and Danio rerio, reduced the prevalence of axolotls as models in embryogenesis studies. Recent sequencing of the large axolotl genome opens up new possibilities for defining the recipes that drive the formation and regeneration of tissues like the limbs and spinal cord. However, to decode the large A. mexicanum genome will take a herculean effort, community resources, and the development of novel techniques. Here, we provide an updated axolotl-staging chart ranging from one-cell stage to immature adult, paired with a perspective on both historical and current axolotl research that spans from their use in early studies of development to the recent cutting-edge research, employment of transgenesis, high-resolution imaging, and study of mechanisms deployed in regeneration.

摘要

墨西哥钝口螈(美西螈)胚胎和幼体多年来一直被用作发育和再生研究的模式生物。这种具有幼态持续特性的水生物种具有在成年后再生大多数(如果不是全部)组织的独特能力。由于其大型外部发育的胚胎,美西螈是发育生物学的原始模式物种之一。然而,随着对具有测序和注释基因组的生物(如非洲爪蟾和热带爪蟾以及斑马鱼)的获取和使用的增加,美西螈作为胚胎发生研究模型的普遍性降低了。最近对大型美西螈基因组的测序为定义驱动肢体和脊髓等组织形成和再生的“配方”开辟了新的可能性。然而,要解码大型美西螈基因组将需要巨大的努力、社区资源和新型技术的发展。在这里,我们提供了一个从单细胞期到未成熟成年期的更新的美西螈分期图表,并对从早期发育研究到最近的前沿研究、转基因的应用、高分辨率成像以及再生中所使用的机制研究的美西螈研究的历史和现状进行了探讨。

相似文献

1
The amazing and anomalous axolotls as scientific models.
Dev Dyn. 2022 Jun;251(6):922-933. doi: 10.1002/dvdy.470. Epub 2022 Apr 1.
2
Comparative Analysis of Cartilage Marker Gene Expression Patterns during Axolotl and Xenopus Limb Regeneration.
PLoS One. 2015 Jul 17;10(7):e0133375. doi: 10.1371/journal.pone.0133375. eCollection 2015.
5
Characterization of immunoglobulin in the gigantic genome of .
Front Immunol. 2023 Jan 27;14:1039274. doi: 10.3389/fimmu.2023.1039274. eCollection 2023.
8
Transgenesis in axolotl (Ambystoma mexicanum).
Methods Mol Biol. 2015;1290:269-77. doi: 10.1007/978-1-4939-2495-0_21.
9
Compatible limb patterning mechanisms in urodeles and anurans.
Dev Biol. 1989 Feb;131(2):294-301. doi: 10.1016/s0012-1606(89)80002-8.
10
Comparison of protein expression profile of limb regeneration between neotenic and metamorphic axolotl.
Biochem Biophys Res Commun. 2020 Feb 5;522(2):428-434. doi: 10.1016/j.bbrc.2019.11.118. Epub 2019 Nov 22.

引用本文的文献

1
Connecting Bone Remodeling and Regeneration: Unraveling Hormones and Signaling Pathways.
Biology (Basel). 2025 Mar 7;14(3):274. doi: 10.3390/biology14030274.
2
NSAID-mediated cyclooxygenase inhibition disrupts ectodermal derivative formation in axolotl embryos.
bioRxiv. 2025 Feb 15:2024.10.30.621122. doi: 10.1101/2024.10.30.621122.

本文引用的文献

2
Regulation of stem cell identity by miR-200a during spinal cord regeneration.
Development. 2022 Feb 1;149(3). doi: 10.1242/dev.200033. Epub 2022 Feb 14.
3
Neural control of growth and size in the axolotl limb regenerate.
Elife. 2021 Nov 15;10:e68584. doi: 10.7554/eLife.68584.
4
Comparing nerve-mediated FGF signalling in the early initiation phase of organ regeneration across mutliple amphibian species.
J Exp Zool B Mol Dev Evol. 2021 Nov;336(7):529-539. doi: 10.1002/jez.b.23093. Epub 2021 Aug 13.
5
Axolotls' and Mices' Oral-Maxillofacial Trephining Wounds Heal Differently.
Cells Tissues Organs. 2021;210(4):260-274. doi: 10.1159/000518036. Epub 2021 Jul 1.
6
Postembryonic development and aging of the appendicular skeleton in Ambystoma mexicanum.
Dev Dyn. 2022 Jun;251(6):1015-1034. doi: 10.1002/dvdy.407. Epub 2021 Aug 4.
8
Finding Solutions for Fibrosis: Understanding the Innate Mechanisms Used by Super-Regenerator Vertebrates to Combat Scarring.
Adv Sci (Weinh). 2021 Aug;8(15):e2100407. doi: 10.1002/advs.202100407. Epub 2021 May 24.
10
Fibroblast dedifferentiation as a determinant of successful regeneration.
Dev Cell. 2021 May 17;56(10):1541-1551.e6. doi: 10.1016/j.devcel.2021.04.016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验