文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

寻找纤维化问题的解决方案:了解超级再生脊椎动物用于对抗瘢痕形成的先天机制。

Finding Solutions for Fibrosis: Understanding the Innate Mechanisms Used by Super-Regenerator Vertebrates to Combat Scarring.

机构信息

Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.

The Harvard Stem Cell Institute, Cambridge, MA, 02138, USA.

出版信息

Adv Sci (Weinh). 2021 Aug;8(15):e2100407. doi: 10.1002/advs.202100407. Epub 2021 May 24.


DOI:10.1002/advs.202100407
PMID:34032013
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8336523/
Abstract

Soft tissue fibrosis and cutaneous scarring represent massive clinical burdens to millions of patients per year and the therapeutic options available are currently quite limited. Despite what is known about the process of fibrosis in mammals, novel approaches for combating fibrosis and scarring are necessary. It is hypothesized that scarring has evolved as a solution to maximize healing speed to reduce fluid loss and infection. This hypothesis, however, is complicated by regenerative animals, which have arguably the most remarkable healing abilities and are capable of scar-free healing. This review explores the differences observed between adult mammalian healing that typically results in fibrosis versus healing in regenerative animals that heal scarlessly. Each stage of wound healing is surveyed in depth from the perspective of many regenerative and fibrotic healers so as to identify the most important molecular and physiological variances along the way to disparate injury repair outcomes. Understanding how these powerful model systems accomplish the feat of scar-free healing may provide critical therapeutic approaches to the treatment or prevention of fibrosis.

摘要

软组织纤维化和皮肤瘢痕形成每年给数百万患者带来巨大的临床负担,而目前可用的治疗选择相当有限。尽管人们已经了解了哺乳动物纤维化的过程,但仍需要寻找新的方法来对抗纤维化和瘢痕形成。有人假设,瘢痕形成是为了最大限度地提高愈合速度以减少液体流失和感染而进化出来的。然而,这一假设因再生动物而变得复杂,再生动物拥有最显著的愈合能力,能够实现无瘢痕愈合。本综述探讨了成年哺乳动物愈合通常导致纤维化与再生动物无瘢痕愈合之间观察到的差异。从许多再生和纤维化愈合者的角度深入调查了伤口愈合的每个阶段,以确定在不同的损伤修复结果过程中最重要的分子和生理差异。了解这些强大的模型系统如何实现无瘢痕愈合的壮举,可能为纤维化的治疗或预防提供关键的治疗方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d23d/8336523/36fcb4cbea43/ADVS-8-2100407-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d23d/8336523/c534f8460b34/ADVS-8-2100407-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d23d/8336523/82ed3ab9e7b3/ADVS-8-2100407-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d23d/8336523/5baea36e3b7d/ADVS-8-2100407-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d23d/8336523/0c5eadbbe190/ADVS-8-2100407-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d23d/8336523/0a4d700fd863/ADVS-8-2100407-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d23d/8336523/36fcb4cbea43/ADVS-8-2100407-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d23d/8336523/c534f8460b34/ADVS-8-2100407-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d23d/8336523/82ed3ab9e7b3/ADVS-8-2100407-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d23d/8336523/5baea36e3b7d/ADVS-8-2100407-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d23d/8336523/0c5eadbbe190/ADVS-8-2100407-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d23d/8336523/0a4d700fd863/ADVS-8-2100407-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d23d/8336523/36fcb4cbea43/ADVS-8-2100407-g005.jpg

相似文献

[1]
Finding Solutions for Fibrosis: Understanding the Innate Mechanisms Used by Super-Regenerator Vertebrates to Combat Scarring.

Adv Sci (Weinh). 2021-8

[2]
Regenerative healing, scar-free healing and scar formation across the species: current concepts and future perspectives.

Exp Dermatol. 2014-9

[3]
Scar-free healing: from embryonic mechanisms to adult therapeutic intervention.

Philos Trans R Soc Lond B Biol Sci. 2004-5-29

[4]
Skin regeneration in adult axolotls: a blueprint for scar-free healing in vertebrates.

PLoS One. 2012-4-2

[5]
A Murine Incisional Fetal Wound-Healing Model to Study Scarless and Fibrotic Skin Repair.

Methods Mol Biol. 2021

[6]
New insights into vertebrate skin regeneration.

Int Rev Cell Mol Biol. 2014

[7]
Novel therapies for scar reduction and regenerative healing of skin wounds.

Trends Biotechnol. 2008-4

[8]
Multi-omic analysis reveals divergent molecular events in scarring and regenerative wound healing.

Cell Stem Cell. 2022-2-3

[9]
Translational lessons from scarless healing of cutaneous wounds and regenerative repair of the myocardium.

J Mol Cell Cardiol. 2009-6-25

[10]
Extracellular matrix considerations for scar-free repair and regeneration: insights from regenerative diversity among vertebrates.

Int J Biochem Cell Biol. 2014-11

引用本文的文献

[1]
Molecular Imaging of Fibroblast Activation Protein in Response to Cardiac Injury Using [Ga]Ga-DATA.SA.FAPi.

Pharmaceuticals (Basel). 2025-4-29

[2]
Biodegradable Double-Layer Hydrogels with Sequential Drug Release for Multi-Phase Collaborative Regulation in Scar-Free Wound Healing.

J Funct Biomater. 2025-5-7

[3]
Nanomanaging Chronic Wounds with Targeted Exosome Therapeutics.

Pharmaceutics. 2025-3-13

[4]
The paradigm of stem cell secretome in tissue repair and regeneration: Present and future perspectives.

Wound Repair Regen. 2025

[5]
A Skin Stress Shielding Platform Based on Body Temperature-Induced Shrinking of Hydrogel for Promoting Scar-Less Wound Healing.

Adv Sci (Weinh). 2024-11

[6]
Putative epithelial-mesenchymal transitions during salamander limb regeneration: Current perspectives and future investigations.

Ann N Y Acad Sci. 2024-10

[7]
Adaptive immunity of materials: Implications for tissue healing and regeneration.

Bioact Mater. 2024-8-9

[8]
Pharmacological regulation of tissue fibrosis by targeting the mechanical contraction of myofibroblasts.

Fundam Res. 2021-12-23

[9]
Transdermal Transfersome Nanogels Control Hypertrophic Scar Formation via Synergy of Macrophage Phenotype-Switching and Anti-Fibrosis Effect.

Adv Sci (Weinh). 2024-2

[10]
Macrophages modulate fibrosis during newt lens regeneration.

Res Sq. 2023-11-25

本文引用的文献

[1]
MBD2 serves as a viable target against pulmonary fibrosis by inhibiting macrophage M2 program.

Sci Adv. 2021-1

[2]
Dermal fibroblasts have different extracellular matrix profiles induced by TGF-β, PDGF and IL-6 in a model for skin fibrosis.

Sci Rep. 2020-10-14

[3]
Lef1 expression in fibroblasts maintains developmental potential in adult skin to regenerate wounds.

Elife. 2020-9-29

[4]
Schisandra Inhibit Bleomycin-Induced Idiopathic Pulmonary Fibrosis in Rats via Suppressing M2 Macrophage Polarization.

Biomed Res Int. 2020

[5]
Distinct Regulatory Programs Control the Latent Regenerative Potential of Dermal Fibroblasts during Wound Healing.

Cell Stem Cell. 2020-9-3

[6]
Novel fibrin-fibronectin matrix accelerates mice skin wound healing.

Bioact Mater. 2020-7-1

[7]
Multiple cryoinjuries modulate the efficiency of zebrafish heart regeneration.

Sci Rep. 2020-7-14

[8]
Regeneration in the spiny mouse, Acomys, a new mammalian model.

Curr Opin Genet Dev. 2020-10

[9]
Collagen microarchitecture mechanically controls myofibroblast differentiation.

Proc Natl Acad Sci U S A. 2020-5-8

[10]
Wound healing across the animal kingdom: Crosstalk between the immune system and the extracellular matrix.

Dev Dyn. 2020-7

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索