透过人工智能和机器学习视角对疼痛研究的分析

The Analysis of Pain Research through the Lens of Artificial Intelligence and Machine Learning.

作者信息

Nagireddi Jagadesh N, Vyas Amanya Ketan, Sanapati Mahendra R, Soin Amol, Manchikanti Laxmaiah

机构信息

Pain Management Centers of America, Paducah, KY & Evansville, IN.

Pain Management Centers of America, Evansville, IN.

出版信息

Pain Physician. 2022 Mar;25(2):E211-E243.

DOI:
Abstract

BACKGROUND

Traditional pain assessment methods have significant limitations due to the high variability in patient reported pain scores and perception of pain by different individuals. There is a need for generalized and automatic pain detection and recognition methods. In this paper, state-of-the-art machine learning (ML) and deep learning methods in this field are analyzed as well as pain management techniques.

OBJECTIVE

The objective of the study is to analyze the current use of artificial intelligence (AI) and ML in the analysis and management of pain and to disseminate this knowledge prompting future utilization by medical professionals.

STUDY DESIGN

A narrative review of the literature focusing on the latest algorithms in AI and ML for pain assessment and management.

METHODS

Research studies were collected using a literature search on PubMed, Science Direct and IEEE Xplore between 2018 and 2020.

RESULTS

The results of our assessment resulted in the identification of 47 studies meeting inclusion criteria. Pain assessment was the most studied subject with 11 studies, followed by automated measurements with 10 studies, spinal diagnosis with 8 studies, facial expression with 7 studies, pain assessment in special settings evaluated in 5 studies, 4 studies described treatment algorithms, and 2 studies assessed neonatal pain. These studies varied from simple to highly complex methodology. The majority of the studies suffered from inclusion of a small number of patients and without replication of results. However, considering AI and ML are dynamic and emerging specialties, the results shown here are promising. Consequently, we have described all the available literature in summary formats with commentary. Among the various assessments, facial expression and spinal diagnosis and management appear to be ready for inclusion as we continue to progress.

LIMITATIONS

This review is not a systematic review of ML and AI applications in pain research. This review only provides a general idea of the upcoming techniques but does not provide an authoritative evidence-based conclusive opinion of their clinical application and effectiveness.

CONCLUSION

While a majority of the studies focused on classification tasks, very few studies have explored the diagnosis and management of pain. Usage of ML techniques as support tools for clinicians holds an immense potential in the field of pain management.

摘要

背景

由于患者报告的疼痛评分存在高度变异性以及不同个体对疼痛的感知不同,传统的疼痛评估方法存在显著局限性。因此,需要通用且自动的疼痛检测和识别方法。本文分析了该领域的先进机器学习(ML)和深度学习方法以及疼痛管理技术。

目的

本研究的目的是分析人工智能(AI)和ML在疼痛分析和管理中的当前应用,并传播这些知识,促使医学专业人员在未来加以利用。

研究设计

对文献进行叙述性综述,重点关注用于疼痛评估和管理的AI和ML最新算法。

方法

通过在2018年至2020年间在PubMed、Science Direct和IEEE Xplore上进行文献检索来收集研究。

结果

我们的评估结果确定了47项符合纳入标准的研究。疼痛评估是研究最多的主题,有11项研究,其次是自动测量,有10项研究,脊柱诊断有8项研究,面部表情有7项研究,特殊环境下的疼痛评估在5项研究中进行了评估,4项研究描述了治疗算法,2项研究评估了新生儿疼痛。这些研究的方法从简单到高度复杂各不相同。大多数研究存在纳入患者数量少且结果未重复验证的问题。然而,考虑到AI和ML是动态且新兴的专业领域,此处所示结果很有前景。因此,我们以总结形式并带有评论描述了所有可用文献。在各种评估中,随着我们不断推进,面部表情以及脊柱诊断和管理似乎已准备好纳入其中。

局限性

本综述并非对ML和AI在疼痛研究中的应用进行系统综述。本综述仅提供了即将出现的技术的大致概念,但并未对其临床应用和有效性提供基于权威证据的结论性意见。

结论

虽然大多数研究集中在分类任务上,但很少有研究探索疼痛的诊断和管理。将ML技术用作临床医生的支持工具在疼痛管理领域具有巨大潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索