Suppr超能文献

基于机器学习的无镜头阴影成像技术用于现场便携式细胞计量学。

Machine Learning Based Lens-Free Shadow Imaging Technique for Field-Portable Cytometry.

机构信息

Department of Computer Engineering, Pandit Deendayal Energy University, Gandhinagar 382007, India.

Department of Electronics and Information Engineering, Korea University, Sejong 30019, Korea.

出版信息

Biosensors (Basel). 2022 Feb 27;12(3):144. doi: 10.3390/bios12030144.

Abstract

The lens-free shadow imaging technique (LSIT) is a well-established technique for the characterization of microparticles and biological cells. Due to its simplicity and cost-effectiveness, various low-cost solutions have been developed, such as automatic analysis of complete blood count (CBC), cell viability, 2D cell morphology, 3D cell tomography, etc. The developed auto characterization algorithm so far for this custom-developed LSIT cytometer was based on the handcrafted features of the cell diffraction patterns from the LSIT cytometer, that were determined from our empirical findings on thousands of samples of individual cell types, which limit the system in terms of induction of a new cell type for auto classification or characterization. Further, its performance suffers from poor image (cell diffraction pattern) signatures due to their small signal or background noise. In this work, we address these issues by leveraging the artificial intelligence-powered auto signal enhancing scheme such as denoising autoencoder and adaptive cell characterization technique based on the transfer of learning in deep neural networks. The performance of our proposed method shows an increase in accuracy >98% along with the signal enhancement of >5 dB for most of the cell types, such as red blood cell (RBC) and white blood cell (WBC). Furthermore, the model is adaptive to learn new type of samples within a few learning iterations and able to successfully classify the newly introduced sample along with the existing other sample types.

摘要

无透镜阴影成像技术(LSIT)是一种成熟的用于微粒子和生物细胞特征分析的技术。由于其简单性和成本效益,已经开发出了各种低成本的解决方案,例如完整的血液计数(CBC)、细胞活力、2D 细胞形态、3D 细胞断层扫描等的自动分析。迄今为止,为这种定制的 LSIT 细胞仪开发的自动特征化算法是基于 LSIT 细胞仪的细胞衍射模式的手工制作特征,这些特征是从我们对数千个个体细胞类型样本的经验发现中确定的,这限制了系统对自动分类或特征化的新细胞类型的诱导。此外,由于其信号小或背景噪声,其性能受到影响。在这项工作中,我们通过利用人工智能驱动的自动信号增强方案来解决这些问题,例如去噪自动编码器和基于深度神经网络中迁移学习的自适应细胞特征化技术。我们提出的方法的性能显示出准确性提高了>98%,并且大多数细胞类型(如红细胞(RBC)和白细胞(WBC))的信号增强了>5dB。此外,该模型具有自适应学习新类型样本的能力,并且能够成功地对新引入的样本以及现有的其他样本类型进行分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/725a/8946550/77d59828469f/biosensors-12-00144-g001.jpg

相似文献

1
Machine Learning Based Lens-Free Shadow Imaging Technique for Field-Portable Cytometry.
Biosensors (Basel). 2022 Feb 27;12(3):144. doi: 10.3390/bios12030144.
2
Field-Portable Leukocyte Classification Device Based on Lens-Free Shadow Imaging Technique.
Biosensors (Basel). 2022 Jan 18;12(2):47. doi: 10.3390/bios12020047.
3
Label-Free CD34+ Cell Identification Using Deep Learning and Lens-Free Shadow Imaging Technology.
Biosensors (Basel). 2023 Nov 21;13(12):993. doi: 10.3390/bios13120993.
4
Research and Application of Ancient Chinese Pattern Restoration Based on Deep Convolutional Neural Network.
Comput Intell Neurosci. 2021 Dec 10;2021:2691346. doi: 10.1155/2021/2691346. eCollection 2021.
5
White blood cells detection and classification based on regional convolutional neural networks.
Med Hypotheses. 2020 Feb;135:109472. doi: 10.1016/j.mehy.2019.109472. Epub 2019 Nov 4.
7
Current status of artificial intelligence analysis for endoscopic ultrasonography.
Dig Endosc. 2021 Jan;33(2):298-305. doi: 10.1111/den.13880. Epub 2020 Dec 5.
8
AIMIC: Deep Learning for Microscopic Image Classification.
Comput Methods Programs Biomed. 2022 Nov;226:107162. doi: 10.1016/j.cmpb.2022.107162. Epub 2022 Sep 28.
9
Classification of Human White Blood Cells Using Machine Learning for Stain-Free Imaging Flow Cytometry.
Cytometry A. 2020 Mar;97(3):308-319. doi: 10.1002/cyto.a.23920. Epub 2019 Nov 5.
10
Low-cost telemedicine device performing cell and particle size measurement based on lens-free shadow imaging technology.
Biosens Bioelectron. 2015 May 15;67:715-23. doi: 10.1016/j.bios.2014.10.040. Epub 2014 Oct 18.

引用本文的文献

2
Multi-Channel Cellytics for Rapid and Cost-Effective Monitoring of Leukocyte Activation.
Biosensors (Basel). 2025 Feb 24;15(3):143. doi: 10.3390/bios15030143.
3
Revolutionizing anemia detection: integrative machine learning models and advanced attention mechanisms.
Vis Comput Ind Biomed Art. 2024 Jul 17;7(1):18. doi: 10.1186/s42492-024-00169-4.
4
Impedimetric Detection of Cancer Markers Based on Nanofiber Copolymers.
Biosensors (Basel). 2024 Jan 31;14(2):77. doi: 10.3390/bios14020077.
5
Label-Free CD34+ Cell Identification Using Deep Learning and Lens-Free Shadow Imaging Technology.
Biosensors (Basel). 2023 Nov 21;13(12):993. doi: 10.3390/bios13120993.
6
Intelligent Biosignal Processing in Wearable and Implantable Sensors.
Biosensors (Basel). 2022 Jun 9;12(6):396. doi: 10.3390/bios12060396.

本文引用的文献

1
Deep Learning-Based Holographic Polarization Microscopy.
ACS Photonics. 2020 Nov 18;7(11):3023-3034. doi: 10.1021/acsphotonics.0c01051. Epub 2020 Oct 13.
2
Deep learning-enabled point-of-care sensing using multiplexed paper-based sensors.
NPJ Digit Med. 2020 May 7;3:66. doi: 10.1038/s41746-020-0274-y. eCollection 2020.
3
Optimization of the Convolutional Neural Networks for Automatic Detection of Skin Cancer.
Open Med (Wars). 2020 Jan 13;15:27-37. doi: 10.1515/med-2020-0006. eCollection 2020.
4
Deep Convolution Neural Network for Malignancy Detection and Classification in Microscopic Uterine Cervix Cell Images.
Asian Pac J Cancer Prev. 2019 Nov 1;20(11):3447-3456. doi: 10.31557/APJCP.2019.20.11.3447.
6
Deep Learning to Improve Breast Cancer Detection on Screening Mammography.
Sci Rep. 2019 Aug 29;9(1):12495. doi: 10.1038/s41598-019-48995-4.
7
Cancer Diagnosis Using Deep Learning: A Bibliographic Review.
Cancers (Basel). 2019 Aug 23;11(9):1235. doi: 10.3390/cancers11091235.
8
End-to-end lung cancer screening with three-dimensional deep learning on low-dose chest computed tomography.
Nat Med. 2019 Jun;25(6):954-961. doi: 10.1038/s41591-019-0447-x. Epub 2019 May 20.
9
Artificial intelligence in healthcare.
Nat Biomed Eng. 2018 Oct;2(10):719-731. doi: 10.1038/s41551-018-0305-z. Epub 2018 Oct 10.
10
Development and validation of a deep-learning algorithm for the detection of polyps during colonoscopy.
Nat Biomed Eng. 2018 Oct;2(10):741-748. doi: 10.1038/s41551-018-0301-3. Epub 2018 Oct 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验