Suppr超能文献

用于形状记忆石墨烯纳米带的机器学习及其在生物医学工程中的应用

Machine Learning for Shape Memory Graphene Nanoribbons and Applications in Biomedical Engineering.

作者信息

León Carlos, Melnik Roderick

机构信息

M3AI Laboratory, MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, ON N2L 3C5, Canada.

BCAM-Basque Centre for Applied Mathematics, 48009 Bilbao, Spain.

出版信息

Bioengineering (Basel). 2022 Feb 23;9(3):90. doi: 10.3390/bioengineering9030090.

Abstract

Shape memory materials have been playing an important role in a wide range of bioengineering applications. At the same time, recent developments of graphene-based nanostructures, such as nanoribbons, have demonstrated that, due to the unique properties of graphene, they can manifest superior electronic, thermal, mechanical, and optical characteristics ideally suited for their potential usage for the next generation of diagnostic devices, drug delivery systems, and other biomedical applications. One of the most intriguing parts of these new developments lies in the fact that certain types of such graphene nanoribbons can exhibit shape memory effects. In this paper, we apply machine learning tools to build an interatomic potential from DFT calculations for highly ordered graphene oxide nanoribbons, a material that had demonstrated shape memory effects with a recovery strain up to 14.5% for 2D layers. The graphene oxide layer can shrink to a metastable phase with lower constant lattice through the application of an electric field, and returns to the initial phase through an external mechanical force. The deformation leads to an electronic rearrangement and induces magnetization around the oxygen atoms. DFT calculations show no magnetization for sufficiently narrow nanoribbons, while the machine learning model can predict the suppression of the metastable phase for the same narrower nanoribbons. We can improve the prediction accuracy by analyzing only the evolution of the metastable phase, where no magnetization is found according to DFT calculations. The model developed here allows also us to study the evolution of the phases for wider nanoribbons, that would be computationally inaccessible through a pure DFT approach. Moreover, we extend our analysis to realistic systems that include vacancies and boron or nitrogen impurities at the oxygen atomic positions. Finally, we provide a brief overview of the current and potential applications of the materials exhibiting shape memory effects in bioengineering and biomedical fields, focusing on data-driven approaches with machine learning interatomic potentials.

摘要

形状记忆材料在广泛的生物工程应用中一直发挥着重要作用。与此同时,基于石墨烯的纳米结构(如纳米带)的最新发展表明,由于石墨烯的独特性质,它们可以展现出卓越的电子、热、机械和光学特性,非常适合用于下一代诊断设备、药物输送系统及其他生物医学应用。这些新进展中最引人入胜的部分之一在于,某些类型的此类石墨烯纳米带能够表现出形状记忆效应。在本文中,我们应用机器学习工具,根据密度泛函理论(DFT)计算为高度有序的氧化石墨烯纳米带构建原子间势,这种材料在二维层中已展现出高达14.5%的恢复应变的形状记忆效应。通过施加电场,氧化石墨烯层可以收缩至具有较低恒定晶格的亚稳相,并通过外部机械力恢复到初始相。这种变形会导致电子重排,并在氧原子周围诱导出磁化。DFT计算表明,对于足够窄的纳米带没有磁化现象,而机器学习模型可以预测相同较窄纳米带的亚稳相抑制情况。通过仅分析亚稳相的演变,我们可以提高预测精度,根据DFT计算,在亚稳相中未发现磁化现象。这里开发的模型还使我们能够研究更宽纳米带的相演变,这通过纯DFT方法在计算上是无法实现的。此外,我们将分析扩展到包含氧原子位置处的空位以及硼或氮杂质的实际系统。最后,我们简要概述了在生物工程和生物医学领域中表现出形状记忆效应的材料的当前和潜在应用,重点关注基于机器学习原子间势的数据驱动方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8cc6/8945856/30b9a8cc6e75/bioengineering-09-00090-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验