Suppr超能文献

基于轻型脑电图的现实驾驶过程中实时压力监测测量方法的验证

Validation of a Light EEG-Based Measure for Real-Time Stress Monitoring during Realistic Driving.

作者信息

Sciaraffa Nicolina, Di Flumeri Gianluca, Germano Daniele, Giorgi Andrea, Di Florio Antonio, Borghini Gianluca, Vozzi Alessia, Ronca Vincenzo, Varga Rodrigo, van Gasteren Marteyn, Babiloni Fabio, Aricò Pietro

机构信息

BrainSigns Srl, Lungotevere Michelangelo 9, 00192 Rome, Italy.

Department of Molecular Medicine, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy.

出版信息

Brain Sci. 2022 Feb 24;12(3):304. doi: 10.3390/brainsci12030304.

Abstract

Driver's stress affects decision-making and the probability of risk occurrence, and it is therefore a key factor in road safety. This suggests the need for continuous stress monitoring. This work aims at validating a stress neurophysiological measure-a Neurometric-for out-of-the-lab use obtained from lightweight EEG relying on two wet sensors, in real-time, and without calibration. The Neurometric was tested during a multitasking experiment and validated with a realistic driving simulator. Twenty subjects participated in the experiment, and the resulting stress Neurometric was compared with the Random Forest (RF) model, calibrated by using EEG features and both intra-subject and cross-task approaches. The Neurometric was also compared with a measure based on skin conductance level (SCL), representing one of the physiological parameters investigated in the literature mostly correlated with stress variations. We found that during both multitasking and realistic driving experiments, the Neurometric was able to discriminate between low and high levels of stress with an average Area Under Curve (AUC) value higher than 0.9. Furthermore, the stress Neurometric showed higher AUC and stability than both the SCL measure and the RF calibrated with a cross-task approach. In conclusion, the Neurometric proposed in this work proved to be suitable for out-of-the-lab monitoring of stress levels.

摘要

驾驶员的压力会影响决策以及风险发生的概率,因此它是道路安全的一个关键因素。这表明需要进行持续的压力监测。这项工作旨在验证一种压力神经生理学测量方法——神经测量法,用于在实验室外使用,该方法通过依赖两个湿电极传感器的轻便脑电图实时获取,且无需校准。在一项多任务实验中对神经测量法进行了测试,并使用逼真的驾驶模拟器进行了验证。20名受试者参与了该实验,并将所得的压力神经测量值与通过使用脑电图特征以及受试者内和跨任务方法进行校准的随机森林(RF)模型进行了比较。还将神经测量法与基于皮肤电导水平(SCL)的测量方法进行了比较,SCL是文献中研究的与压力变化最相关的生理参数之一。我们发现,在多任务和逼真驾驶实验期间,神经测量法能够区分低压力水平和高压力水平,平均曲线下面积(AUC)值高于0.9。此外,压力神经测量法的AUC和稳定性均高于SCL测量法以及采用跨任务方法校准的RF。总之,这项工作中提出的神经测量法被证明适用于实验室外压力水平的监测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3610/8946850/33f0d78dce9f/brainsci-12-00304-g001.jpg

相似文献

1
2
Evaluation of a New Lightweight EEG Technology for Translational Applications of Passive Brain-Computer Interfaces.
Front Hum Neurosci. 2022 Jul 14;16:901387. doi: 10.3389/fnhum.2022.901387. eCollection 2022.
3
EEG-based decoding of error-related brain activity in a real-world driving task.
J Neural Eng. 2015 Dec;12(6):066028. doi: 10.1088/1741-2560/12/6/066028. Epub 2015 Nov 23.
4
Monitoring driver's alertness based on the driving performance estimation and the EEG power spectrum analysis.
Conf Proc IEEE Eng Med Biol Soc. 2005;2005:5738-41. doi: 10.1109/IEMBS.2005.1615791.
5
In a heart beat: Using driver's physiological changes to determine the quality of a takeover in highly automated vehicles.
Accid Anal Prev. 2019 Oct;131:180-190. doi: 10.1016/j.aap.2019.06.011. Epub 2019 Jul 11.
7
Monitoring sleepiness with on-board electrophysiological recordings for preventing sleep-deprived traffic accidents.
Clin Neurophysiol. 2007 Sep;118(9):1906-22. doi: 10.1016/j.clinph.2007.04.031. Epub 2007 Jul 24.
9
Inferring driver's turning direction through detection of error related brain activity.
Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:2196-9. doi: 10.1109/EMBC.2013.6609971.
10
Analysis of effects of driver's evasive action time on rear-end collision risk using a driving simulator.
J Safety Res. 2021 Sep;78:242-250. doi: 10.1016/j.jsr.2021.06.001. Epub 2021 Jun 15.

引用本文的文献

1
Listening effort and stress in tinnitus: a multidimensional approach.
Front Neurosci. 2025 Jul 7;19:1591622. doi: 10.3389/fnins.2025.1591622. eCollection 2025.
3
EEG dataset for natural image recognition through visual stimuli.
Data Brief. 2025 May 8;60:111639. doi: 10.1016/j.dib.2025.111639. eCollection 2025 Jun.
4
Characterization of Cochlear Implant Artifact and Removal Based on Multi-Channel Wiener Filter in Unilateral Child Patients.
Bioengineering (Basel). 2024 Jul 24;11(8):753. doi: 10.3390/bioengineering11080753.
5
Design Decisions for Wearable EEG to Detect Motor Imagery Movements.
Sensors (Basel). 2024 Jul 23;24(15):4763. doi: 10.3390/s24154763.
6
Advances in Neuropsychology: Top Papers Published in in 2022-2023.
Brain Sci. 2024 Jun 9;14(6):588. doi: 10.3390/brainsci14060588.
9
Neurophysiological mental fatigue assessment for developing user-centered Artificial Intelligence as a solution for autonomous driving.
Front Neurorobot. 2023 Nov 30;17:1240933. doi: 10.3389/fnbot.2023.1240933. eCollection 2023.

本文引用的文献

1
Study of EEG characteristics while solving scientific problems with different mental effort.
Sci Rep. 2021 Dec 10;11(1):23783. doi: 10.1038/s41598-021-03321-9.
2
A Review on Mental Stress Assessment Methods Using EEG Signals.
Sensors (Basel). 2021 Jul 26;21(15):5043. doi: 10.3390/s21155043.
5
Stress Assessment by Combining Neurophysiological Signals and Radio Communications of Air Traffic Controllers.
Annu Int Conf IEEE Eng Med Biol Soc. 2020 Jul;2020:851-854. doi: 10.1109/EMBC44109.2020.9175958.
7
An Effective Mental Stress State Detection and Evaluation System Using Minimum Number of Frontal Brain Electrodes.
Diagnostics (Basel). 2020 May 9;10(5):292. doi: 10.3390/diagnostics10050292.
8
A Review on Machine Learning for EEG Signal Processing in Bioengineering.
IEEE Rev Biomed Eng. 2021;14:204-218. doi: 10.1109/RBME.2020.2969915. Epub 2021 Jan 22.
9
How Neurophysiological Measures Can be Used to Enhance the Evaluation of Remote Tower Solutions.
Front Hum Neurosci. 2019 Sep 6;13:303. doi: 10.3389/fnhum.2019.00303. eCollection 2019.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验