文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Hyperspectral Imaging for Tissue Classification after Advanced Stage Ovarian Cancer Surgery-A Pilot Study.

作者信息

van Vliet-Pérez Sharline M, van de Berg Nick J, Manni Francesca, Lai Marco, Rijstenberg Lucia, Hendriks Benno H W, Dankelman Jenny, Ewing-Graham Patricia C, Nieuwenhuyzen-de Boer Gatske M, van Beekhuizen Heleen J

机构信息

Department of Biomechanical Engineering, Delft University of Technology, 2628 CD Delft, The Netherlands.

Department of Radiotherapy, Erasmus MC Cancer Institute, University Medical Center Rotterdam, 3015 GD Rotterdam, The Netherlands.

出版信息

Cancers (Basel). 2022 Mar 10;14(6):1422. doi: 10.3390/cancers14061422.


DOI:10.3390/cancers14061422
PMID:35326577
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8946803/
Abstract

The most important prognostic factor for the survival of advanced-stage epithelial ovarian cancer (EOC) is the completeness of cytoreductive surgery (CRS). Therefore, an intraoperative technique to detect microscopic tumors would be of great value. The aim of this pilot study is to assess the feasibility of near-infrared hyperspectral imaging (HSI) for EOC detection in ex vivo tissue samples. Images were collected during CRS in 11 patients in the wavelength range of 665−975 nm, and processed by calibration, normalization, and noise filtering. A linear support vector machine (SVM) was employed to classify healthy and tumorous tissue (defined as >50% tumor cells). Classifier performance was evaluated using leave-one-out cross-validation. Images of 26 tissue samples from 10 patients were included, containing 26,446 data points that were matched to histopathology. Tumorous tissue could be classified with an area under the curve of 0.83, a sensitivity of 0.81, a specificity of 0.70, and Matthew’s correlation coefficient of 0.41. This study paves the way to in vivo and intraoperative use of HSI during CRS. Hyperspectral imaging can scan a whole tissue surface in a fast and non-contact way. Our pilot study demonstrates that HSI and SVM learning can be used to discriminate EOC from surrounding tissue.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/497e/8946803/f0f867cdb27b/cancers-14-01422-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/497e/8946803/78160fe30b07/cancers-14-01422-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/497e/8946803/0d771e235506/cancers-14-01422-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/497e/8946803/e72a757e37d4/cancers-14-01422-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/497e/8946803/d87f72a406c5/cancers-14-01422-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/497e/8946803/22feec508eea/cancers-14-01422-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/497e/8946803/d0f15c763e18/cancers-14-01422-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/497e/8946803/f0f867cdb27b/cancers-14-01422-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/497e/8946803/78160fe30b07/cancers-14-01422-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/497e/8946803/0d771e235506/cancers-14-01422-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/497e/8946803/e72a757e37d4/cancers-14-01422-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/497e/8946803/d87f72a406c5/cancers-14-01422-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/497e/8946803/22feec508eea/cancers-14-01422-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/497e/8946803/d0f15c763e18/cancers-14-01422-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/497e/8946803/f0f867cdb27b/cancers-14-01422-g007.jpg

相似文献

[1]
Hyperspectral Imaging for Tissue Classification after Advanced Stage Ovarian Cancer Surgery-A Pilot Study.

Cancers (Basel). 2022-3-10

[2]
Hyperspectral imaging for tissue classification, a way toward smart laparoscopic colorectal surgery.

J Biomed Opt. 2019-1

[3]
MALDI-Imaging for Classification of Epithelial Ovarian Cancer Histotypes from a Tissue Microarray Using Machine Learning Methods.

Proteomics Clin Appl. 2019-1

[4]
Quantitative Wavelength Analysis and Image Classification for Intraoperative Cancer Diagnosis with Hyperspectral Imaging.

Proc SPIE Int Soc Opt Eng. 2015-2-21

[5]
Tissue Classification of Breast Cancer by Hyperspectral Unmixing.

Cancers (Basel). 2023-5-9

[6]
Classification of hyperspectral endocrine tissue images using support vector machines.

Int J Med Robot. 2020-10

[7]
In vivo detection of atherosclerotic plaque using non-contact and label-free near-infrared hyperspectral imaging.

Atherosclerosis. 2016-7

[8]
Heavy metal Hg stress detection in tobacco plant using hyperspectral sensing and data-driven machine learning methods.

Spectrochim Acta A Mol Biomol Spectrosc. 2021-1-15

[9]
Label-free reflectance hyperspectral imaging for tumor margin assessment: a pilot study on surgical specimens of cancer patients.

J Biomed Opt. 2017-8

[10]
Tissue classification of oncologic esophageal resectates based on hyperspectral data.

Int J Comput Assist Radiol Surg. 2019-6-20

引用本文的文献

[1]
Bridging technology and medicine: artificial intelligence in targeted anticancer drug delivery.

RSC Adv. 2025-8-4

[2]
Toward real-time margin assessment in breast-conserving surgery with hyperspectral imaging.

Sci Rep. 2025-3-20

[3]
Advancing hyperspectral imaging and machine learning tools toward clinical adoption in tissue diagnostics: A comprehensive review.

APL Bioeng. 2024-12-6

[4]
Hyperspectral imaging-based erythema classification in atopic dermatitis.

Skin Res Technol. 2024-3

[5]
Tissue Classification of Breast Cancer by Hyperspectral Unmixing.

Cancers (Basel). 2023-5-9

[6]
Artificial Intelligence in Oncology: A Topical Collection in 2022.

Cancers (Basel). 2023-2-7

[7]
Staging of Skin Cancer Based on Hyperspectral Microscopic Imaging and Machine Learning.

Biosensors (Basel). 2022-9-25

[8]
Identidication of novel biomarkers in non-small cell lung cancer using machine learning.

Sci Rep. 2022-10-6

本文引用的文献

[1]
Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries.

CA Cancer J Clin. 2021-5

[2]
Broadband hyperspectral imaging for breast tumor detection using spectral and spatial information.

Biomed Opt Express. 2019-8-7

[3]
Hyperspectral Imaging of Head and Neck Squamous Cell Carcinoma for Cancer Margin Detection in Surgical Specimens from 102 Patients Using Deep Learning.

Cancers (Basel). 2019-9-14

[4]
Hyperspectral imaging for head and neck cancer detection: specular glare and variance of the tumor margin in surgical specimens.

J Med Imaging (Bellingham). 2019-7

[5]
Toward assessment of resection margins using hyperspectral diffuse reflection imaging (400-1,700 nm) during tongue cancer surgery.

Lasers Surg Med. 2020-7

[6]
A phase II, multicenter, open-label trial of OTL38 injection for the intra-operative imaging of folate receptor-alpha positive ovarian cancer.

Gynecol Oncol. 2019-7-27

[7]
Tissue classification of oncologic esophageal resectates based on hyperspectral data.

Int J Comput Assist Radiol Surg. 2019-6-20

[8]
In-Vivo and Ex-Vivo Tissue Analysis through Hyperspectral Imaging Techniques: Revealing the Invisible Features of Cancer.

Cancers (Basel). 2019-5-30

[9]
Optical biopsy of head and neck cancer using hyperspectral imaging and convolutional neural networks.

J Biomed Opt. 2019-3

[10]
Hyperspectral Imaging for Resection Margin Assessment during Cancer Surgery.

Clin Cancer Res. 2019-3-18

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索