文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用高光谱成像和卷积神经网络进行头颈部癌症的光学活检。

Optical biopsy of head and neck cancer using hyperspectral imaging and convolutional neural networks.

机构信息

University of Texas at Dallas, Department of Bioengineering, Richardson, Texas, United States.

Emory University and Georgia Institute of Technology, Department of Biomedical Engineering, Atlanta,, United States.

出版信息

J Biomed Opt. 2019 Mar;24(3):1-9. doi: 10.1117/1.JBO.24.3.036007.


DOI:10.1117/1.JBO.24.3.036007
PMID:30891966
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC6975184/
Abstract

For patients undergoing surgical cancer resection of squamous cell carcinoma (SCCa), cancer-free surgical margins are essential for good prognosis. We developed a method to use hyperspectral imaging (HSI), a noncontact optical imaging modality, and convolutional neural networks (CNNs) to perform an optical biopsy of ex-vivo, surgical gross-tissue specimens, collected from 21 patients undergoing surgical cancer resection. Using a cross-validation paradigm with data from different patients, the CNN can distinguish SCCa from normal aerodigestive tract tissues with an area under the receiver operator curve (AUC) of 0.82. Additionally, normal tissue from the upper aerodigestive tract can be subclassified into squamous epithelium, muscle, and gland with an average AUC of 0.94. After separately training on thyroid tissue, the CNN can differentiate between thyroid carcinoma and normal thyroid with an AUC of 0.95, 92% accuracy, 92% sensitivity, and 92% specificity. Moreover, the CNN can discriminate medullary thyroid carcinoma from benign multinodular goiter (MNG) with an AUC of 0.93. Classical-type papillary thyroid carcinoma is differentiated from MNG with an AUC of 0.91. Our preliminary results demonstrate that an HSI-based optical biopsy method using CNNs can provide multicategory diagnostic information for normal and cancerous head-and-neck tissue, and more patient data are needed to fully investigate the potential and reliability of the proposed technique.

摘要

对于接受鳞状细胞癌 (SCCa) 手术切除的患者,无肿瘤切缘是良好预后的关键。我们开发了一种使用高光谱成像 (HSI) 和卷积神经网络 (CNN) 的方法,对来自 21 名接受手术癌症切除的患者的离体手术大体组织标本进行光学活检。使用来自不同患者的数据的交叉验证范例,CNN 可以以 0.82 的接收器工作特征曲线 (AUC) 区分 SCCa 与正常的呼吸道组织。此外,上呼吸道的正常组织可以进一步细分为鳞状上皮、肌肉和腺体,平均 AUC 为 0.94。在分别对甲状腺组织进行训练后,CNN 可以以 0.95 的 AUC、92%的准确率、92%的敏感度和 92%的特异性区分甲状腺癌和正常甲状腺。此外,CNN 可以以 0.93 的 AUC 区分髓样甲状腺癌和良性多结节性甲状腺肿 (MNG)。经典型乳头状甲状腺癌与 MNG 的 AUC 为 0.91。我们的初步结果表明,基于 HSI 的使用 CNN 的光学活检方法可以为头颈部正常和癌组织提供多类别诊断信息,需要更多患者数据来充分研究所提出技术的潜力和可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/869b/6975184/6c72e510e791/JBO-024-036007-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/869b/6975184/e28dfa14ff01/JBO-024-036007-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/869b/6975184/38345bb62795/JBO-024-036007-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/869b/6975184/73d54345e3cc/JBO-024-036007-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/869b/6975184/e5421b07cdd6/JBO-024-036007-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/869b/6975184/948ceffd479c/JBO-024-036007-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/869b/6975184/be3fb5e73066/JBO-024-036007-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/869b/6975184/6c72e510e791/JBO-024-036007-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/869b/6975184/e28dfa14ff01/JBO-024-036007-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/869b/6975184/38345bb62795/JBO-024-036007-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/869b/6975184/73d54345e3cc/JBO-024-036007-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/869b/6975184/e5421b07cdd6/JBO-024-036007-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/869b/6975184/948ceffd479c/JBO-024-036007-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/869b/6975184/be3fb5e73066/JBO-024-036007-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/869b/6975184/6c72e510e791/JBO-024-036007-g007.jpg

相似文献

[1]
Optical biopsy of head and neck cancer using hyperspectral imaging and convolutional neural networks.

J Biomed Opt. 2019-3

[2]
Optical Biopsy of Head and Neck Cancer Using Hyperspectral Imaging and Convolutional Neural Networks.

Proc SPIE Int Soc Opt Eng. 2018

[3]
Tumor Margin Classification of Head and Neck Cancer Using Hyperspectral Imaging and Convolutional Neural Networks.

Proc SPIE Int Soc Opt Eng. 2018-2

[4]
Deep convolutional neural networks for classifying head and neck cancer using hyperspectral imaging.

J Biomed Opt. 2017-6-1

[5]
Automatic detection of head and neck squamous cell carcinoma on histologic slides using hyperspectral microscopic imaging.

J Biomed Opt. 2022-4

[6]
Automatic optical biopsy for colorectal cancer using hyperspectral imaging and artificial neural networks.

Surg Endosc. 2022-11

[7]
Hyperspectral Imaging of Head and Neck Squamous Cell Carcinoma for Cancer Margin Detection in Surgical Specimens from 102 Patients Using Deep Learning.

Cancers (Basel). 2019-9-14

[8]
Cancer Detection Using Hyperspectral Imaging and Evaluation of the Superficial Tumor Margin Variance with Depth.

Proc SPIE Int Soc Opt Eng. 2019-2

[9]
Classification of head and neck cancer from PET images using convolutional neural networks.

Sci Rep. 2023-6-29

[10]
Hyperspectral Microscopic Imaging for Automatic Detection of Head and Neck Squamous Cell Carcinoma Using Histologic Image and Machine Learning.

Proc SPIE Int Soc Opt Eng. 2020-2

引用本文的文献

[1]
Hyperspectral imaging for tumor resection guidance in surgery: a systematic review of preclinical and clinical studies.

J Biomed Opt. 2025-2

[2]
Toward real-time margin assessment in breast-conserving surgery with hyperspectral imaging.

Sci Rep. 2025-3-20

[3]
Recent advances of photodiagnosis and treatment for head and neck squamous cell carcinoma.

Neoplasia. 2025-2

[4]
Polarized Hyperspectral Microscopic Imaging for Zebrafish.

Proc SPIE Int Soc Opt Eng. 2024

[5]
Polarized Hyperspectral Microscopic Imaging for White Blood Cells on Wright-Stained Blood Smear Slides.

Proc SPIE Int Soc Opt Eng. 2023

[6]
Polarized hyperspectral microscopic imaging for collagen visualization on pathologic slides of head and neck squamous cell carcinoma.

Proc SPIE Int Soc Opt Eng. 2023

[7]
Automated Polarized Hyperspectral Imaging (PHSI) for and Tissue Assessment.

Proc SPIE Int Soc Opt Eng. 2023

[8]
Systematic meta-analysis of computer-aided detection to detect early esophageal cancer using hyperspectral imaging.

Biomed Opt Express. 2023-7-31

[9]
Evaluating acoustic and thermal properties of a plaque phantom.

J Ultrasound. 2024-9

[10]
Effects of dimension reduction of hyperspectral images in skin gross pathology.

Skin Res Technol. 2023-2

本文引用的文献

[1]
Optical Biopsy of Head and Neck Cancer Using Hyperspectral Imaging and Convolutional Neural Networks.

Proc SPIE Int Soc Opt Eng. 2018

[2]
Label-free hyperspectral imaging and quantification methods for surgical margin assessment of tissue specimens of cancer patients.

Annu Int Conf IEEE Eng Med Biol Soc. 2017-7

[3]
Label-free reflectance hyperspectral imaging for tumor margin assessment: a pilot study on surgical specimens of cancer patients.

J Biomed Opt. 2017-8

[4]
Deep convolutional neural networks for classifying head and neck cancer using hyperspectral imaging.

J Biomed Opt. 2017-6-1

[5]
Prognostic factors for recurrence of locally advanced differentiated thyroid cancer.

J Surg Oncol. 2017-12

[6]
Detection of Head and Neck Cancer in Surgical Specimens Using Quantitative Hyperspectral Imaging.

Clin Cancer Res. 2017-6-13

[7]
Manifold Embedding and Semantic Segmentation for Intraoperative Guidance With Hyperspectral Brain Imaging.

IEEE Trans Med Imaging. 2017-4-24

[8]
Hyperspectral imaging fluorescence excitation scanning for colon cancer detection.

J Biomed Opt. 2016-10-1

[9]
Hyperspectral Imaging of Neoplastic Progression in a Mouse Model of Oral Carcinogenesis.

Proc SPIE Int Soc Opt Eng. 2016-2-27

[10]
Directional Kernel Density Estimation for Classification of Breast Tissue Spectra.

IEEE Trans Med Imaging. 2016-7-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索