Suppr超能文献

使用机器学习识别非小细胞肺癌的新型生物标志物。

Identidication of novel biomarkers in non-small cell lung cancer using machine learning.

机构信息

Department of Respiratory Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.

Department of Clinical Laboratory, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China.

出版信息

Sci Rep. 2022 Oct 6;12(1):16693. doi: 10.1038/s41598-022-21050-5.

Abstract

Lung cancer is one of the leading causes of cancer-related deaths worldwide, and non-small cell lung cancer (NSCLC) accounts for a large proportion of lung cancer cases, with few diagnostic and therapeutic targets currently available for NSCLC. This study aimed to identify specific biomarkers for NSCLC. We obtained three gene-expression profiles from the Gene Expression Omnibus database (GSE18842, GSE21933, and GSE32863) and screened for differentially expressed genes (DEGs) between NSCLC and normal lung tissue. Enrichment analyses were performed using Gene Ontology, Disease Ontology, and the Kyoto Encyclopedia of Genes and Genomes. Machine learning methods were used to identify the optimal diagnostic biomarkers for NSCLC using least absolute shrinkage and selection operator logistic regression, and support vector machine recursive feature elimination. CIBERSORT was used to assess immune cell infiltration in NSCLC and the correlation between biomarkers and immune cells. Finally, using western blot, small interfering RNA, Cholecystokinin-8, and transwell assays, the biological functions of biomarkers with high predictive value were validated. A total of 371 DEGs (165 up-regulated genes and 206 down-regulated genes) were identified, and enrichment analysis revealed that these DEGs might be linked to the development and progression of NSCLC. ABCA8, ADAMTS8, ASPA, CEP55, FHL1, PYCR1, RAMP3, and TPX2 genes were identified as novel diagnostic biomarkers for NSCLC. Monocytes were the most visible activated immune cells in NSCLC. The knockdown of the TPX2 gene, a biomarker with a high predictive value, inhibited A549 cell proliferation and migration. This study identified eight potential diagnostic biomarkers for NSCLC. Further, the TPX2 gene may be a therapeutic target for NSCLC.

摘要

肺癌是全球癌症相关死亡的主要原因之一,非小细胞肺癌(NSCLC)占肺癌病例的很大比例,目前针对 NSCLC 的诊断和治疗靶点很少。本研究旨在鉴定 NSCLC 的特定生物标志物。我们从基因表达综合数据库(GSE18842、GSE21933 和 GSE32863)中获得了三个基因表达谱,并筛选 NSCLC 和正常肺组织之间差异表达的基因(DEGs)。使用基因本体论、疾病本体论和京都基因与基因组百科全书进行富集分析。使用最小绝对收缩和选择算子逻辑回归和支持向量机递归特征消除的机器学习方法来确定 NSCLC 的最佳诊断生物标志物。使用 CIBERSORT 评估 NSCLC 中的免疫细胞浸润以及生物标志物与免疫细胞之间的相关性。最后,使用 Western blot、小干扰 RNA、胆囊收缩素-8 和 Transwell 测定法验证具有高预测价值的生物标志物的生物学功能。共鉴定出 371 个 DEGs(165 个上调基因和 206 个下调基因),富集分析表明这些 DEGs 可能与 NSCLC 的发生和发展有关。ABCA8、ADAMTS8、ASPA、CEP55、FHL1、PYCR1、RAMP3 和 TPX2 基因被鉴定为 NSCLC 的新型诊断生物标志物。单核细胞是 NSCLC 中最明显的激活免疫细胞。具有高预测价值的生物标志物 TPX2 基因的敲低抑制了 A549 细胞的增殖和迁移。本研究鉴定了 8 个潜在的 NSCLC 诊断生物标志物。此外,TPX2 基因可能是 NSCLC 的治疗靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0dcc/9537298/de59b3955af2/41598_2022_21050_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验