Suppr超能文献

翼状胬肉与眼表鳞状上皮肿瘤:使用新型自体荧光多光谱成像技术的光学活检

Pterygium and Ocular Surface Squamous Neoplasia: Optical Biopsy Using a Novel Autofluorescence Multispectral Imaging Technique.

作者信息

Habibalahi Abbas, Allende Alexandra, Michael Jesse, Anwer Ayad G, Campbell Jared, Mahbub Saabah B, Bala Chandra, Coroneo Minas T, Goldys Ewa M

机构信息

ARC Centre of Excellence for Nanoscale Biophotonics, University of New South Wales, Sydney, NSW 2032, Australia.

Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2032, Australia.

出版信息

Cancers (Basel). 2022 Mar 21;14(6):1591. doi: 10.3390/cancers14061591.

Abstract

In this study, differentiation of pterygium vs. ocular surface squamous neoplasia based on multispectral autofluorescence imaging technique was investigated. Fifty (N = 50) patients with histopathological diagnosis of pterygium (PTG) and/or ocular surface squamous neoplasia (OSSN) were recruited. Fixed unstained biopsy specimens were imaged by multispectral microscopy. Tissue autofluorescence images were obtained with a custom-built fluorescent microscope with 59 spectral channels, each with specific excitation and emission wavelength ranges, suitable for the most abundant tissue fluorophores such as elastin, flavins, porphyrin, and lipofuscin. Images were analyzed using a new classification framework called fused-classification, designed to minimize interpatient variability, as an established support vector machine learning method. Normal, PTG, and OSSN regions were automatically detected and delineated, with accuracy evaluated against expert assessment by a specialist in OSSN pathology. Signals from spectral channels yielding signals from elastin, flavins, porphyrin, and lipofuscin were significantly different between regions classified as normal, PTG, and OSSN (p < 0.01). Differential diagnosis of PTG/OSSN and normal tissue had accuracy, sensitivity, and specificity of 88 ± 6%, 84 ± 10% and 91 ± 6%, respectively. Our automated diagnostic method generated maps of the reasonably well circumscribed normal/PTG and OSSN interface. PTG and OSSN margins identified by our automated analysis were in close agreement with the margins found in the H&E sections. Such a map can be rapidly generated on a real time basis and potentially used for intraoperative assessment.

摘要

在本研究中,对基于多光谱自发荧光成像技术鉴别翼状胬肉与眼表鳞状上皮肿瘤进行了调查。招募了50例经组织病理学诊断为翼状胬肉(PTG)和/或眼表鳞状上皮肿瘤(OSSN)的患者。对固定的未染色活检标本进行多光谱显微镜成像。使用定制的具有59个光谱通道的荧光显微镜获取组织自发荧光图像,每个通道具有特定的激发和发射波长范围,适用于诸如弹性蛋白、黄素、卟啉和脂褐素等最丰富的组织荧光团。使用一种名为融合分类的新分类框架对图像进行分析,该框架旨在最小化患者间的变异性,这是一种成熟的支持向量机学习方法。自动检测并勾勒出正常、PTG和OSSN区域,并由OSSN病理学专家根据专家评估对准确性进行评估。在分类为正常、PTG和OSSN的区域之间,来自产生弹性蛋白、黄素、卟啉和脂褐素信号的光谱通道的信号存在显著差异(p < 0.01)。PTG/OSSN与正常组织的鉴别诊断的准确性、敏感性和特异性分别为88±6%、84±10%和91±6%。我们的自动诊断方法生成了边界相当清晰的正常/PTG和OSSN界面图。我们的自动分析确定的PTG和OSSN边缘与苏木精-伊红(H&E)切片中发现的边缘密切一致。这样的图可以实时快速生成,并有可能用于术中评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb0f/8946656/4e02c48de6f7/cancers-14-01591-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验