Suppr超能文献

使用明场深度形态特征进行移植用自动化胰岛活力评估。

Automated pancreatic islet viability assessment for transplantation using bright-field deep morphological signature.

作者信息

Habibalahi Abbas, Campbell Jared M, Walters Stacey N, Mahbub Saabah B, Anwer Ayad G, Grey Shane T, Goldys Ewa M

机构信息

Graduate School of Biomedical Engineering, University of New South Wales, Sydney, NSW 2052, Australia.

Australian Research Council Centre of Excellence for Nanoscale BioPhotonics, Australia.

出版信息

Comput Struct Biotechnol J. 2023 Feb 24;21:1851-1859. doi: 10.1016/j.csbj.2023.02.039. eCollection 2023.

Abstract

Islets transplanted for type-1 diabetes have their viability reduced by warm ischemia, dimethyloxalylglycine (DMOG; hypoxia model), oxidative stress and cytokine injury. This results in frequent transplant failures and the major burden of patients having to undergo multiple rounds of treatment for insulin independence. Presently there is no reliable measure to assess islet preparation viability prior to clinical transplantation. We investigated deep morphological signatures (DMS) for detecting the exposure of islets to viability compromising insults from brightfield images. Accuracies ranged from 98 % to 68 % for; ROS damage, pro-inflammatory cytokines, warm ischemia and DMOG. When islets were disaggregated to single cells to enable higher throughput data collection, good accuracy was still obtained (83-71 %). Encapsulation of islets reduced accuracy for cytokine exposure, but it was still high (78 %). Unsupervised modelling of the DMS for islet preparations transplanted into a syngeneic mouse model was able to predict whether or not they would restore glucose control with 100 % accuracy. Our strategy for constructing DMS' is effective for the assessment of islet pre-transplant viability. If translated into the clinic, standard equipment could be used to prospectively identify non-functional islet preparations unable to contribute to the restoration of glucose control and reduce the burden of unsuccessful treatments.

摘要

用于1型糖尿病治疗的胰岛会因热缺血、二甲基乙二醛甘氨酸(DMOG;缺氧模型)、氧化应激和细胞因子损伤而降低其活力。这导致移植频繁失败,患者不得不接受多轮治疗以实现胰岛素自主,负担沉重。目前,在临床移植前,尚无可靠的方法来评估胰岛制剂的活力。我们研究了深度形态特征(DMS),以从明场图像中检测胰岛是否受到损害活力的损伤。对于活性氧损伤、促炎细胞因子、热缺血和DMOG,准确率范围为98%至68%。当将胰岛解离为单个细胞以实现更高通量的数据收集时,仍可获得较高的准确率(83%-71%)。胰岛封装降低了细胞因子暴露的准确率,但仍然很高(78%)。对移植到同基因小鼠模型中的胰岛制剂的DMS进行无监督建模,能够100%准确地预测它们是否能恢复血糖控制。我们构建DMS的策略对于评估胰岛移植前的活力是有效的。如果转化到临床中,可以使用标准设备前瞻性地识别无法有助于恢复血糖控制的无功能胰岛制剂,并减轻治疗失败的负担。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07f2/10006710/57c1385055c1/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验