Borkała Jakub J, Jebarathinam Chellasamy, Sarkar Shubhayan, Augusiak Remigiusz
Center for Theoretical Physics, Polish Academy of Sciences, Aleja Lotników 32/46, 02-668 Warsaw, Poland.
Entropy (Basel). 2022 Feb 28;24(3):350. doi: 10.3390/e24030350.
While it has recently been demonstrated how to certify the maximal amount of randomness from any pure two-qubit entangled state in a device-independent way, the problem of optimal randomness certification from entangled states of higher local dimension remains open. Here we introduce a method for device-independent certification of the maximal possible amount of 2log23 random bits using pure bipartite entangled two-qutrit states and extremal nine-outcome general non-projective measurements. To this aim, we exploit a device-independent method for certification of the full Weyl-Heisenberg basis in three-dimensional Hilbert spaces together with a one-sided device-independent method for certification of two-qutrit partially entangled states.
虽然最近已经展示了如何以与设备无关的方式从任何纯双量子比特纠缠态中认证最大量的随机性,但从更高局部维度的纠缠态进行最优随机性认证的问题仍然悬而未决。在这里,我们介绍一种与设备无关的方法,用于使用纯二分纠缠双量子三态和极端的九结果一般非投影测量来认证最大可能量的(2\log_23)个随机比特。为此,我们利用一种与设备无关的方法来认证三维希尔伯特空间中的完整外尔 - 海森堡基,以及一种单边与设备无关的方法来认证双量子三部分纠缠态。