Ulibarrena Andrés, Webb Jonathan W, Pickston Alexander, Ho Joseph, Fedrizzi Alessandro, Pozas-Kerstjens Alejandro
Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, UK.
Group of Applied Physics, University of Geneva, Geneva, Switzerland.
npj Quantum Inf. 2024;10(1):117. doi: 10.1038/s41534-024-00911-z. Epub 2024 Nov 14.
Quantum networks connect and supply a large number of nodes with multi-party quantum resources for secure communication, networked quantum computing and distributed sensing. As these networks grow in size, certification tools will be required to answer questions regarding their properties. In this work we demonstrate a general method to guarantee that certain correlations cannot be generated in a given quantum network. We apply quantum inflation methods to data obtained in quantum group encryption experiments, guaranteeing the impossibility of producing the observed results in networks with fewer optical elements. Our results pave the way for scalable methods of obtaining device-independent guarantees on the network structure underlying multipartite quantum protocols.
量子网络连接并为大量节点提供多方量子资源,用于安全通信、网络量子计算和分布式传感。随着这些网络规模的扩大,将需要认证工具来回答有关其属性的问题。在这项工作中,我们展示了一种通用方法,以确保在给定的量子网络中不会产生某些关联。我们将量子膨胀方法应用于量子群组加密实验中获得的数据,确保在具有较少光学元件的网络中不可能产生观测结果。我们的结果为在多方量子协议基础的网络结构上获得与设备无关的保证的可扩展方法铺平了道路。