Suppr超能文献

Interep:一个用于重复测量数据高维交互分析的R软件包。

Interep: An R Package for High-Dimensional Interaction Analysis of the Repeated Measurement Data.

作者信息

Zhou Fei, Ren Jie, Liu Yuwen, Li Xiaoxi, Wang Weiqun, Wu Cen

机构信息

Department of Statistics, Kansas State University, Manhattan, KS 66506, USA.

Department of Biostatistics and Health Data Sciences, Indiana University School of Medicine, Indianapolis, IN 46202, USA.

出版信息

Genes (Basel). 2022 Mar 19;13(3):544. doi: 10.3390/genes13030544.

Abstract

We introduce , an R package for interaction analysis of repeated measurement data with high-dimensional main and interaction effects. In G × E interaction studies, the forms of environmental factors play a critical role in determining how structured sparsity should be imposed in the high-dimensional scenario to identify important effects. Zhou et al. (2019) (PMID: 31816972) proposed a longitudinal penalization method to select main and interaction effects corresponding to the individual and group structure, respectively, which requires a mixture of individual and group level penalties. The R package implements generalized estimating equation (GEE)-based penalization methods with this sparsity assumption. Moreover, alternative methods have also been implemented in the package. These alternative methods merely select effects on an individual level and ignore the group-level interaction structure. In this software article, we first introduce the statistical methodology corresponding to the penalized GEE methods implemented in the package. Next, we present the usage of the core and supporting functions, which is followed by a simulation example with R codes and annotations. The R package is available at The Comprehensive R Archive Network (CRAN).

摘要

我们介绍了一个用于对具有高维主效应和交互效应的重复测量数据进行交互分析的R包。在基因与环境(G×E)交互研究中,环境因素的形式在确定如何在高维场景中施加结构化稀疏性以识别重要效应方面起着关键作用。周等人(2019年)( PMID:31816972)提出了一种纵向惩罚方法,分别选择与个体和组结构相对应的主效应和交互效应,这需要个体和组水平惩罚的混合。该R包实现了基于广义估计方程(GEE)的惩罚方法,并采用了这种稀疏性假设。此外,该包中还实现了替代方法。这些替代方法仅在个体水平上选择效应,而忽略了组水平的交互结构。在这篇软件文章中,我们首先介绍与该包中实现的惩罚GEE方法相对应的统计方法。接下来,我们展示核心函数和支持函数的用法,随后是一个带有R代码和注释的模拟示例。该R包可在综合R存档网络(CRAN)上获取。

相似文献

1
Interep: An R Package for High-Dimensional Interaction Analysis of the Repeated Measurement Data.
Genes (Basel). 2022 Mar 19;13(3):544. doi: 10.3390/genes13030544.
2
Springer: An R package for bi-level variable selection of high-dimensional longitudinal data.
Front Genet. 2023 Apr 6;14:1088223. doi: 10.3389/fgene.2023.1088223. eCollection 2023.
3
penalizedSVM: a R-package for feature selection SVM classification.
Bioinformatics. 2009 Jul 1;25(13):1711-2. doi: 10.1093/bioinformatics/btp286. Epub 2009 Apr 27.
4
Spathial: an R package for the evolutionary analysis of biological data.
Bioinformatics. 2020 Nov 1;36(17):4664-4667. doi: 10.1093/bioinformatics/btaa273.
5
glmgraph: an R package for variable selection and predictive modeling of structured genomic data.
Bioinformatics. 2015 Dec 15;31(24):3991-3. doi: 10.1093/bioinformatics/btv497. Epub 2015 Aug 26.
6
Elastic SCAD as a novel penalization method for SVM classification tasks in high-dimensional data.
BMC Bioinformatics. 2011 May 9;12:138. doi: 10.1186/1471-2105-12-138.
7
An R package VIGoR for joint estimation of multiple linear learners with variational Bayesian inference.
Bioinformatics. 2022 Jun 13;38(12):3306-3309. doi: 10.1093/bioinformatics/btac328.
8
A Bayesian group sparse multi-task regression model for imaging genetics.
Bioinformatics. 2017 Aug 15;33(16):2513-2522. doi: 10.1093/bioinformatics/btx215.
9
Model-based boosting in high dimensions.
Bioinformatics. 2006 Nov 15;22(22):2828-9. doi: 10.1093/bioinformatics/btl462. Epub 2006 Aug 29.
10
circlize Implements and enhances circular visualization in R.
Bioinformatics. 2014 Oct;30(19):2811-2. doi: 10.1093/bioinformatics/btu393. Epub 2014 Jun 14.

引用本文的文献

1
Using bilateral data in controls and patients with bilateral and unilateral pathology requires increased scrutiny.
J Biomech. 2024 Jan;162:111855. doi: 10.1016/j.jbiomech.2023.111855. Epub 2023 Oct 30.
2
Springer: An R package for bi-level variable selection of high-dimensional longitudinal data.
Front Genet. 2023 Apr 6;14:1088223. doi: 10.3389/fgene.2023.1088223. eCollection 2023.

本文引用的文献

1
A tree-based gene-environment interaction analysis with rare features.
Stat Anal Data Min. 2022 Oct;15(5):648-674. doi: 10.1002/sam.11578. Epub 2022 Mar 1.
2
Sparse group variable selection for gene-environment interactions in the longitudinal study.
Genet Epidemiol. 2022 Jul;46(5-6):317-340. doi: 10.1002/gepi.22461. Epub 2022 Jun 29.
3
Gene-environment interaction identification via penalized robust divergence.
Biom J. 2022 Mar;64(3):461-480. doi: 10.1002/bimj.202000157. Epub 2021 Nov 1.
4
Gene-Environment Interaction: A Variable Selection Perspective.
Methods Mol Biol. 2021;2212:191-223. doi: 10.1007/978-1-0716-0947-7_13.
5
Identification of Prognostic Genes and Pathways in Lung Adenocarcinoma Using a Bayesian Approach.
Cancer Inform. 2020 Dec 10;16:1176935116684825. doi: 10.1177/1176935116684825. eCollection 2017.
6
A Novel Cox Proportional Hazards Model for High-Dimensional Genomic Data in Cancer Prognosis.
IEEE/ACM Trans Comput Biol Bioinform. 2021 Sep-Oct;18(5):1821-1830. doi: 10.1109/TCBB.2019.2961667. Epub 2021 Oct 7.
7
Semiparametric Bayesian variable selection for gene-environment interactions.
Stat Med. 2020 Feb 28;39(5):617-638. doi: 10.1002/sim.8434. Epub 2019 Dec 21.
8
Penalized Variable Selection for Lipid-Environment Interactions in a Longitudinal Lipidomics Study.
Genes (Basel). 2019 Dec 3;10(12):1002. doi: 10.3390/genes10121002.
9
Robust network-based analysis of the associations between (epi)genetic measurements.
J Multivar Anal. 2018 Nov;168:119-130. doi: 10.1016/j.jmva.2018.06.009. Epub 2018 Jul 10.
10
Robust network-based regularization and variable selection for high-dimensional genomic data in cancer prognosis.
Genet Epidemiol. 2019 Apr;43(3):276-291. doi: 10.1002/gepi.22194. Epub 2019 Feb 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验