Suppr超能文献

稀疏群组变量选择在纵向研究中的基因-环境交互作用。

Sparse group variable selection for gene-environment interactions in the longitudinal study.

机构信息

Department of Statistics, Kansas State University, Manhattan, Kansas, 66506, USA.

Department of Biostatistics and Health Data Sciences, Indiana University School of Medicine, Indianapolis, Indiana, 46202, USA.

出版信息

Genet Epidemiol. 2022 Jul;46(5-6):317-340. doi: 10.1002/gepi.22461. Epub 2022 Jun 29.

Abstract

Penalized variable selection for high-dimensional longitudinal data has received much attention as it can account for the correlation among repeated measurements while providing additional and essential information for improved identification and prediction performance. Despite the success, in longitudinal studies, the potential of penalization methods is far from fully understood for accommodating structured sparsity. In this article, we develop a sparse group penalization method to conduct the bi-level gene-environment (G   E) interaction study under the repeatedly measured phenotype. Within the quadratic inference function framework, the proposed method can achieve simultaneous identification of main and interaction effects on both the group and individual levels. Simulation studies have shown that the proposed method outperforms major competitors. In the case study of asthma data from the Childhood Asthma Management Program, we conduct G   E study by using high-dimensional single nucleotide polymorphism data as genetic factors and the longitudinal trait, forced expiratory volume in 1 s, as the phenotype. Our method leads to improved prediction and identification of main and interaction effects with important implications.

摘要

高维纵向数据的惩罚变量选择受到了广泛关注,因为它可以解释重复测量之间的相关性,同时为提高识别和预测性能提供额外的重要信息。尽管取得了成功,但在纵向研究中,惩罚方法的潜力远未被充分理解,无法适应结构稀疏性。本文提出了一种稀疏组惩罚方法,在重复测量表型下进行基因-环境(G-E)交互作用的双水平研究。在二次推断函数框架内,该方法可以同时在组和个体水平上识别主效应和交互效应。模拟研究表明,该方法优于主要竞争对手。在儿童哮喘管理计划中哮喘数据的案例研究中,我们使用高维单核苷酸多态性数据作为遗传因素,将纵向特征 1 秒用力呼气量作为表型,进行 G-E 研究。我们的方法提高了主要效应和交互效应的预测和识别能力,具有重要意义。

相似文献

1
Sparse group variable selection for gene-environment interactions in the longitudinal study.
Genet Epidemiol. 2022 Jul;46(5-6):317-340. doi: 10.1002/gepi.22461. Epub 2022 Jun 29.
2
Semiparametric Bayesian variable selection for gene-environment interactions.
Stat Med. 2020 Feb 28;39(5):617-638. doi: 10.1002/sim.8434. Epub 2019 Dec 21.
3
Springer: An R package for bi-level variable selection of high-dimensional longitudinal data.
Front Genet. 2023 Apr 6;14:1088223. doi: 10.3389/fgene.2023.1088223. eCollection 2023.
4
Gene-Environment Interaction: A Variable Selection Perspective.
Methods Mol Biol. 2021;2212:191-223. doi: 10.1007/978-1-0716-0947-7_13.
5
Structured gene-environment interaction analysis.
Biometrics. 2020 Mar;76(1):23-35. doi: 10.1111/biom.13139. Epub 2019 Oct 9.
6
Accommodating missingness in environmental measurements in gene-environment interaction analysis.
Genet Epidemiol. 2017 Sep;41(6):523-554. doi: 10.1002/gepi.22055. Epub 2017 Jun 28.
7
Integrating Multi-Omics Data for Gene-Environment Interactions.
BioTech (Basel). 2021 Jan 29;10(1):3. doi: 10.3390/biotech10010003.
8
Robust Bayesian variable selection for gene-environment interactions.
Biometrics. 2023 Jun;79(2):684-694. doi: 10.1111/biom.13670. Epub 2022 Apr 16.
9
A penalized robust semiparametric approach for gene-environment interactions.
Stat Med. 2015 Dec 30;34(30):4016-30. doi: 10.1002/sim.6609. Epub 2015 Aug 3.
10
Identification of gene-environment interactions with marginal penalization.
Genet Epidemiol. 2020 Mar;44(2):159-196. doi: 10.1002/gepi.22270. Epub 2019 Nov 14.

引用本文的文献

1
Mutual-assistance learning for trustworthy biomarker discovery and disease prediction.
Brief Bioinform. 2025 Mar 4;26(2). doi: 10.1093/bib/bbaf178.
3
Springer: An R package for bi-level variable selection of high-dimensional longitudinal data.
Front Genet. 2023 Apr 6;14:1088223. doi: 10.3389/fgene.2023.1088223. eCollection 2023.
4
Interep: An R Package for High-Dimensional Interaction Analysis of the Repeated Measurement Data.
Genes (Basel). 2022 Mar 19;13(3):544. doi: 10.3390/genes13030544.

本文引用的文献

1
Robust Bayesian variable selection for gene-environment interactions.
Biometrics. 2023 Jun;79(2):684-694. doi: 10.1111/biom.13670. Epub 2022 Apr 16.
2
Identifying Gene-Environment Interactions With Robust Marginal Bayesian Variable Selection.
Front Genet. 2021 Dec 8;12:667074. doi: 10.3389/fgene.2021.667074. eCollection 2021.
3
Modeling genome-wide by environment interactions through omnigenic interactome networks.
Cell Rep. 2021 May 11;35(6):109114. doi: 10.1016/j.celrep.2021.109114.
4
Gene-Environment Interaction: A Variable Selection Perspective.
Methods Mol Biol. 2021;2212:191-223. doi: 10.1007/978-1-0716-0947-7_13.
5
Semiparametric integrative interaction analysis for non-small-cell lung cancer.
Stat Methods Med Res. 2020 Oct;29(10):2865-2880. doi: 10.1177/0962280220909969. Epub 2020 Apr 13.
6
Penalized Variable Selection for Lipid-Environment Interactions in a Longitudinal Lipidomics Study.
Genes (Basel). 2019 Dec 3;10(12):1002. doi: 10.3390/genes10121002.
7
Identification of gene-environment interactions with marginal penalization.
Genet Epidemiol. 2020 Mar;44(2):159-196. doi: 10.1002/gepi.22270. Epub 2019 Nov 14.
8
Robust network-based analysis of the associations between (epi)genetic measurements.
J Multivar Anal. 2018 Nov;168:119-130. doi: 10.1016/j.jmva.2018.06.009. Epub 2018 Jul 10.
9
A Selective Review of Multi-Level Omics Data Integration Using Variable Selection.
High Throughput. 2019 Jan 18;8(1):4. doi: 10.3390/ht8010004.
10
Additive varying-coefficient model for nonlinear gene-environment interactions.
Stat Appl Genet Mol Biol. 2018 Feb 8;17(2):sagmb-2017-0008. doi: 10.1515/sagmb-2017-0008.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验