Suppr超能文献

施普林格:用于高维纵向数据双层变量选择的R包。

Springer: An R package for bi-level variable selection of high-dimensional longitudinal data.

作者信息

Zhou Fei, Liu Yuwen, Ren Jie, Wang Weiqun, Wu Cen

机构信息

Department of Statistics, Kansas State University, Manhattan, KS, United States.

Department of Biostatistics and Health Data Sciences, Indiana University School of Medicine, Indianapolis, IN, United States.

出版信息

Front Genet. 2023 Apr 6;14:1088223. doi: 10.3389/fgene.2023.1088223. eCollection 2023.

Abstract

In high-dimensional data analysis, the bi-level (or the sparse group) variable selection can simultaneously conduct penalization on the group level and within groups, which has been developed for continuous, binary, and survival responses in the literature. Zhou et al. (2022) (PMID: 35766061) has further extended it under the longitudinal response by proposing a quadratic inference function-based penalization method in gene-environment interaction studies. This study introduces "springer," an R package implementing the bi-level variable selection within the QIF framework developed in Zhou et al. (2022). In addition, R package "springer" has also implemented the generalized estimating equation-based sparse group penalization method. Alternative methods focusing only on the group level or individual level have also been provided by the package. In this study, we have systematically introduced the longitudinal penalization methods implemented in the "springer" package. We demonstrate the usage of the core and supporting functions, which is followed by the numerical examples and discussions. R package "springer" is available at https://cran.r-project.org/package=springer.

摘要

在高维数据分析中,双层(或稀疏组)变量选择可以在组级别和组内同时进行惩罚,文献中已针对连续、二元和生存响应开发了这种方法。周等人(2022年)( PMID:35766061)在纵向响应情况下进一步扩展了该方法,在基因 - 环境相互作用研究中提出了一种基于二次推断函数的惩罚方法。本研究介绍了“springer”,这是一个R包,它在周等人(2022年)开发的QIF框架内实现了双层变量选择。此外,R包“springer”还实现了基于广义估计方程的稀疏组惩罚方法。该包还提供了仅关注组级别或个体级别的替代方法。在本研究中,我们系统地介绍了“springer”包中实现的纵向惩罚方法。我们展示了核心函数和支持函数的用法,随后是数值示例和讨论。R包“springer”可在https://cran.r-project.org/package=springer获取。

相似文献

1
Springer: An R package for bi-level variable selection of high-dimensional longitudinal data.
Front Genet. 2023 Apr 6;14:1088223. doi: 10.3389/fgene.2023.1088223. eCollection 2023.
2
Interep: An R Package for High-Dimensional Interaction Analysis of the Repeated Measurement Data.
Genes (Basel). 2022 Mar 19;13(3):544. doi: 10.3390/genes13030544.
3
Sparse group variable selection for gene-environment interactions in the longitudinal study.
Genet Epidemiol. 2022 Jul;46(5-6):317-340. doi: 10.1002/gepi.22461. Epub 2022 Jun 29.
4
ecpc: an R-package for generic co-data models for high-dimensional prediction.
BMC Bioinformatics. 2023 Apr 26;24(1):172. doi: 10.1186/s12859-023-05289-x.
6
LongDat: an R package for covariate-sensitive longitudinal analysis of high-dimensional data.
Bioinform Adv. 2023 May 18;3(1):vbad063. doi: 10.1093/bioadv/vbad063. eCollection 2023.
7
GEInfo: an R package for gene-environment interaction analysis incorporating prior information.
Bioinformatics. 2022 May 26;38(11):3139-3140. doi: 10.1093/bioinformatics/btac301.
8
R package to estimate intracluster correlation coefficient with confidence interval for binary data.
Comput Methods Programs Biomed. 2018 Mar;155:85-92. doi: 10.1016/j.cmpb.2017.10.023. Epub 2017 Oct 31.
9
biospear: an R package for biomarker selection in penalized Cox regression.
Bioinformatics. 2018 Jan 1;34(1):112-113. doi: 10.1093/bioinformatics/btx560.
10
Nonlinear variable selection with continuous outcome: a fully nonparametric incremental forward stagewise approach.
Stat Anal Data Min. 2018 Aug;11(4):188-197. doi: 10.1002/sam.11381. Epub 2018 Jun 19.

本文引用的文献

1
A tree-based gene-environment interaction analysis with rare features.
Stat Anal Data Min. 2022 Oct;15(5):648-674. doi: 10.1002/sam.11578. Epub 2022 Mar 1.
2
Lq-based robust analytics on ultrahigh and high dimensional data.
Stat Med. 2022 Nov 20;41(26):5220-5241. doi: 10.1002/sim.9563. Epub 2022 Sep 13.
3
Sparse group variable selection for gene-environment interactions in the longitudinal study.
Genet Epidemiol. 2022 Jul;46(5-6):317-340. doi: 10.1002/gepi.22461. Epub 2022 Jun 29.
5
Robust structured heterogeneity analysis approach for high-dimensional data.
Stat Med. 2022 Jul 30;41(17):3229-3259. doi: 10.1002/sim.9414. Epub 2022 Apr 23.
6
Robust Bayesian variable selection for gene-environment interactions.
Biometrics. 2023 Jun;79(2):684-694. doi: 10.1111/biom.13670. Epub 2022 Apr 16.
7
Interep: An R Package for High-Dimensional Interaction Analysis of the Repeated Measurement Data.
Genes (Basel). 2022 Mar 19;13(3):544. doi: 10.3390/genes13030544.
8
Identifying Gene-Environment Interactions With Robust Marginal Bayesian Variable Selection.
Front Genet. 2021 Dec 8;12:667074. doi: 10.3389/fgene.2021.667074. eCollection 2021.
9
Gene-environment interaction identification via penalized robust divergence.
Biom J. 2022 Mar;64(3):461-480. doi: 10.1002/bimj.202000157. Epub 2021 Nov 1.
10
Meta-Analyzing Multiple Omics Data With Robust Variable Selection.
Front Genet. 2021 Jul 5;12:656826. doi: 10.3389/fgene.2021.656826. eCollection 2021.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验