Suppr超能文献

欧洲和英国的全基因组测序时代的国家基因组计划:全面综述。

National Genome Initiatives in Europe and the United Kingdom in the Era of Whole-Genome Sequencing: A Comprehensive Review.

机构信息

Institute of Food Science and Biotechnology, Faculty of Chemistry, Brno University of Technology, 61200 Brno, Czech Republic.

Department of Genetics and Molecular Biology, Institute of Experimental Biology, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic.

出版信息

Genes (Basel). 2022 Mar 21;13(3):556. doi: 10.3390/genes13030556.

Abstract

Identification of genomic variability in population plays an important role in the clinical diagnostics of human genetic diseases. Thanks to rapid technological development in the field of massive parallel sequencing technologies, also known as next-generation sequencing (NGS), complex genomic analyses are now easier and cheaper than ever before, which consequently leads to more effective utilization of these techniques in clinical practice. However, interpretation of data from NGS is still challenging due to several issues caused by natural variability of DNA sequences in human populations. Therefore, development and realization of projects focused on description of genetic variability of local population (often called "national or digital genome") with a NGS technique is one of the best approaches to address this problem. The next step of the process is to share such data via publicly available databases. Such databases are important for the interpretation of variants with unknown significance or (likely) pathogenic variants in rare diseases or cancer or generally for identification of pathological variants in a patient's genome. In this paper, we have compiled an overview of published results of local genome sequencing projects from United Kingdom and Europe together with future plans and perspectives for newly announced ones.

摘要

在人类遗传疾病的临床诊断中,鉴定人群中的基因组变异起着重要作用。得益于大规模平行测序技术(也称为下一代测序,NGS)领域的快速技术发展,复杂的基因组分析现在比以往任何时候都更容易和更便宜,这使得这些技术在临床实践中的应用更加有效。然而,由于人类群体中 DNA 序列的自然变异引起的几个问题,NGS 数据的解释仍然具有挑战性。因此,开发和实现专注于使用 NGS 技术描述当地人群(通常称为“国家或数字基因组”)遗传变异的项目是解决该问题的最佳方法之一。该过程的下一步是通过公共可用数据库共享此类数据。这些数据库对于解释罕见疾病或癌症中的未知意义或(可能)致病性变异或一般用于鉴定患者基因组中的病理性变异非常重要。在本文中,我们汇总了来自英国和欧洲的本地基因组测序项目的已发表结果,以及新宣布的项目的未来计划和展望。

相似文献

4
[Infectious diseases in the genomic era].
Rev Chilena Infectol. 2015 Oct;32(5):571-6. doi: 10.4067/S0716-10182015000600013.
5
Enhancement of Plant Productivity in the Post-Genomics Era.
Curr Genomics. 2016 Aug;17(4):295-6. doi: 10.2174/138920291704160607182507.
6
Next-generation sequencing in the clinic: promises and challenges.
Cancer Lett. 2013 Nov 1;340(2):284-95. doi: 10.1016/j.canlet.2012.11.025. Epub 2012 Nov 19.
7
Cracking the Code of Human Diseases Using Next-Generation Sequencing: Applications, Challenges, and Perspectives.
Biomed Res Int. 2015;2015:161648. doi: 10.1155/2015/161648. Epub 2015 Nov 19.
8
Clinical application of amplicon-based next-generation sequencing in cancer.
Cancer Genet. 2013 Dec;206(12):413-9. doi: 10.1016/j.cancergen.2013.10.003. Epub 2013 Oct 11.
10
Clinical Genomics: Challenges and Opportunities.
Crit Rev Eukaryot Gene Expr. 2016;26(2):97-113. doi: 10.1615/CritRevEukaryotGeneExpr.2016015724.

引用本文的文献

3
-integrating genomic medicine into the national healthcare system in France.
Lancet Reg Health Eur. 2025 Jan 6;50:101183. doi: 10.1016/j.lanepe.2024.101183. eCollection 2025 Mar.
4
Detection of antimicrobial resistance via state-of-the-art technologies versus conventional methods.
Front Microbiol. 2025 Feb 25;16:1549044. doi: 10.3389/fmicb.2025.1549044. eCollection 2025.
5
Characterization of the Common Genetic Variation in the Spanish Population of Navarre.
Genes (Basel). 2024 May 4;15(5):585. doi: 10.3390/genes15050585.
6
The Future of Precision Oncology.
Int J Mol Sci. 2023 Aug 9;24(16):12613. doi: 10.3390/ijms241612613.
7
Population monitoring of trisomy 21: problems and approaches.
Mol Cytogenet. 2023 May 14;16(1):6. doi: 10.1186/s13039-023-00637-1.
8
WGS Data Collections: How Do Genomic Databases Transform Medicine?
Int J Mol Sci. 2023 Feb 3;24(3):3031. doi: 10.3390/ijms24033031.
9
Treatment of Femoral Shaft Pseudarthrosis, Case Series and Medico-Legal Implications.
J Clin Med. 2022 Dec 14;11(24):7407. doi: 10.3390/jcm11247407.
10
The Pioneer Advantage: Filling the blank spots on the map of genome diversity in Europe.
Gigascience. 2022 Sep 9;11. doi: 10.1093/gigascience/giac081.

本文引用的文献

1
The Thousand Polish Genomes-A Database of Polish Variant Allele Frequencies.
Int J Mol Sci. 2022 Apr 20;23(9):4532. doi: 10.3390/ijms23094532.
2
Variant interpretation using population databases: Lessons from gnomAD.
Hum Mutat. 2022 Aug;43(8):1012-1030. doi: 10.1002/humu.24309. Epub 2021 Dec 16.
3
Roadmap for Establishing Large-Scale Genomic Medicine Initiatives in Low- and Middle-Income Countries.
Am J Hum Genet. 2020 Oct 1;107(4):589-595. doi: 10.1016/j.ajhg.2020.08.005.
4
CSVS, a crowdsourcing database of the Spanish population genetic variability.
Nucleic Acids Res. 2021 Jan 8;49(D1):D1130-D1137. doi: 10.1093/nar/gkaa794.
5
The Human Gene Mutation Database (HGMD): optimizing its use in a clinical diagnostic or research setting.
Hum Genet. 2020 Oct;139(10):1197-1207. doi: 10.1007/s00439-020-02199-3. Epub 2020 Jun 28.
6
A bird's-eye view of Italian genomic variation through whole-genome sequencing.
Eur J Hum Genet. 2020 Apr;28(4):435-444. doi: 10.1038/s41431-019-0551-x. Epub 2019 Nov 29.
8
Leveraging European infrastructures to access 1 million human genomes by 2022.
Nat Rev Genet. 2019 Nov;20(11):693-701. doi: 10.1038/s41576-019-0156-9. Epub 2019 Aug 27.
9
Benefits and limitations of genome-wide association studies.
Nat Rev Genet. 2019 Aug;20(8):467-484. doi: 10.1038/s41576-019-0127-1.
10
Similarities and differences between variants called with human reference genome HG19 or HG38.
BMC Bioinformatics. 2019 Mar 14;20(Suppl 2):101. doi: 10.1186/s12859-019-2620-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验