Suppr超能文献

频域光学相干断层扫描生物标志物与人工智能在预测中度至重度年龄相关性黄斑变性进展方面的现状

SD-OCT Biomarkers and the Current Status of Artificial Intelligence in Predicting Progression from Intermediate to Advanced AMD.

作者信息

Damian Ioana, Nicoară Simona Delia

机构信息

Department of Ophthalmology, "Iuliu Hatieganu" University of Medicine and Pharmacy, 8 Victor Babeș Street, 400012 Cluj-Napoca, Romania.

Clinic of Ophthalmology, Emergency County Hospital, 3-5 Clinicilor Street, 40006 Cluj-Napoca, Romania.

出版信息

Life (Basel). 2022 Mar 19;12(3):454. doi: 10.3390/life12030454.

Abstract

Age-related macular degeneration (AMD) is one of the leading causes of blindness in the Western World. Optical coherence tomography (OCT) has revolutionized the diagnosis and follow-up of AMD patients. This review focuses on SD-OCT imaging biomarkers which were identified as predictors for progression in intermediate AMD to late AMD, either geographic atrophy (GA) or choroidal neovascularization (CNV). Structural OCT remains the most compelling modality to study AMD features related to the progression such as drusen characteristics, hyperreflective foci (HRF), reticular pseudo-drusen (RPD), sub-RPE hyper-reflective columns and their impact on retinal layers. Further on, we reviewed articles that attempted to integrate biomarkers that have already proven their involvement in intermediate AMD progression, in their models of artificial intelligence (AI). By combining structural biomarkers with genetic risk and lifestyle the predictive ability becomes more accurate.

摘要

年龄相关性黄斑变性(AMD)是西方世界失明的主要原因之一。光学相干断层扫描(OCT)彻底改变了AMD患者的诊断和随访方式。本综述重点关注光谱域光学相干断层扫描(SD-OCT)成像生物标志物,这些标志物被确定为中期AMD进展为晚期AMD(即地图样萎缩(GA)或脉络膜新生血管(CNV))的预测指标。结构性OCT仍然是研究与AMD进展相关特征(如玻璃膜疣特征、高反射灶(HRF)、网状假性玻璃膜疣(RPD)、视网膜色素上皮(RPE)下高反射柱及其对视网膜各层的影响)最具说服力的检查方法。此外,我们还回顾了一些文章,这些文章试图将已被证明与中期AMD进展有关的生物标志物纳入其人工智能(AI)模型中。通过将结构性生物标志物与遗传风险和生活方式相结合,预测能力会变得更加准确。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/df12/8950761/1f2660a222e7/life-12-00454-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验