Suppr超能文献

基于纵向 SD-OCT 成像生物标志物的序贯深度学习方法预测年龄相关性黄斑变性疾病。

Prediction of age-related macular degeneration disease using a sequential deep learning approach on longitudinal SD-OCT imaging biomarkers.

机构信息

Department of Biomedical Informatics, Emory University, Atlanta, GA, 30322, USA.

Department of Radiology, Emory University, Atlanta, GA, 30322, USA.

出版信息

Sci Rep. 2020 Sep 22;10(1):15434. doi: 10.1038/s41598-020-72359-y.

Abstract

We propose a hybrid sequential prediction model called "Deep Sequence", integrating radiomics-engineered imaging features, demographic, and visual factors, with a recursive neural network (RNN) model in the same platform to predict the risk of exudation within a future time-frame in non-exudative AMD eyes. The proposed model provides scores associated with risk of exudation in the short term (within 3 months) and long term (within 21 months), handling challenges related to variability of OCT scan characteristics and the size of the training cohort. We used a retrospective clinical trial dataset that includes 671 AMD fellow eyes with 13,954 observations before any signs of exudation for training and validation in a tenfold cross validation setting. Deep Sequence achieved high performance for the prediction of exudation within 3 months (0.96 ± 0.02 AUCROC) and within 21 months (0.97 ± 0.02 AUCROC) on cross-validation. Training the proposed model on this clinical trial dataset and testing it on an external real-world clinical dataset showed high performance for the prediction within 3-months (0.82 AUCROC) but a clear decrease in performance for the prediction within 21-months (0.68 AUCROC). While performance differences at longer time intervals may be derived from dataset differences, we believe that the high performance and generalizability achieved in short-term predictions may have a high clinical impact allowing for optimal patient follow-up, adding the possibility of more frequent, detailed screening and tailored treatments for those patients with imminent risk of exudation.

摘要

我们提出了一种名为“Deep Sequence”的混合序列预测模型,该模型集成了放射组学工程成像特征、人口统计学和视觉因素,并在同一平台上使用递归神经网络 (RNN) 模型,以预测非渗出性 AMD 眼中未来时间内渗出的风险。该模型提供了与短期(3 个月内)和长期(21 个月内)渗出风险相关的分数,处理了与 OCT 扫描特征的可变性和训练队列大小相关的挑战。我们使用了一个回顾性临床试验数据集,该数据集包括 671 只 AMD 眼,在出现任何渗出迹象之前有 13954 次观察结果,用于在 10 倍交叉验证设置中进行训练和验证。Deep Sequence 在交叉验证中实现了 3 个月内(0.96±0.02 AUCROC)和 21 个月内(0.97±0.02 AUCROC)渗出的高预测性能。在该临床试验数据集上训练提出的模型并在外部真实世界临床数据集上进行测试,结果表明 3 个月内的预测性能较高(0.82 AUCROC),但 21 个月内的预测性能明显下降(0.68 AUCROC)。虽然较长时间间隔的性能差异可能源于数据集的差异,但我们认为在短期预测中实现的高性能和通用性可能具有很高的临床影响,允许对患者进行最佳随访,为那些有渗出风险的患者增加更频繁、更详细的筛查和针对性治疗的可能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验