Suppr超能文献

你所说的假阳性是什么意思?

What do you mean by false positive.

作者信息

Darling John A, Jerde Christopher L, Sepulveda Adam J

机构信息

Center for Environmental Measurement & Modeling, United States Environmental Protection Agency, Research Triangle Park, NC, USA.

Marine Science Institute, University of California, Santa Barbara, CA, USA.

出版信息

Environ DNA. 2020 Nov 25;3(5):879-883. doi: 10.1002/edn3.194.

Abstract

Misunderstandings regarding the term "false positive" present a significant hurdle to broad adoption of eDNA monitoring methods. Here, we identify three challenges to clear communication of false-positive error between scientists, managers, and the public. The first arises from a failure to distinguish between false-positive eDNA detection at the sample level and false-positive inference of taxa presence at the site level. The second is based on the large proportion of false positives that may occur when true-positive detections are likely to be rare, even when rates of contamination or other error are low. And the third misunderstanding occurs when conventional species detection approaches, often based on direct capture, are used to confirm eDNA approaches without acknowledging or quantifying the conventional approach's detection probability. The solutions to these issues include careful and consistent communication of error definitions, managing expectations of error rates, and providing a balanced discussion not only of alternative sources of species DNA, but also of the detection limitations of conventional methods. We argue that the benefit of addressing these misunderstandings will be increased confidence in the utility of eDNA methods and, ultimately, improved resource management using eDNA approaches. The term false positive is often misused in eDNA research and natural resource management. There are issues of scale of inference, the base rate fallacy, and confirmation errors using conventional methods of detection. We offer a perspective to guide discussions of errors in species detection.

摘要

对“假阳性”一词的误解成为广泛采用环境DNA监测方法的重大障碍。在此,我们确定了在科学家、管理人员和公众之间清晰传达假阳性错误的三个挑战。第一个挑战源于未能区分样本层面的环境DNA假阳性检测和位点层面分类单元存在的假阳性推断。第二个挑战基于这样一个事实,即即使污染率或其他错误率很低,但在真阳性检测可能很少的情况下,仍可能出现大量假阳性。第三个误解发生在使用通常基于直接捕获的传统物种检测方法来确认环境DNA方法时,却未承认或量化传统方法的检测概率。解决这些问题的方法包括谨慎且一致地传达错误定义、管理对错误率的预期,以及不仅对物种DNA的其他来源,而且对传统方法的检测局限性进行平衡的讨论。我们认为,解决这些误解的好处将是增强对环境DNA方法效用的信心,并最终改善使用环境DNA方法的资源管理。在环境DNA研究和自然资源管理中,“假阳性”一词经常被误用。存在推断规模、基础比率谬误以及使用传统检测方法时的确认错误等问题。我们提供了一个视角来指导有关物种检测中错误的讨论。

相似文献

1
What do you mean by false positive.
Environ DNA. 2020 Nov 25;3(5):879-883. doi: 10.1002/edn3.194.
2
Exploring technical improvements for environmental nucleic acids-based biodiversity assessment and management in coastal ecosystems.
J Environ Manage. 2025 Mar;377:124724. doi: 10.1016/j.jenvman.2025.124724. Epub 2025 Feb 27.
3
Assessing environmental DNA detection in controlled lentic systems.
PLoS One. 2014 Jul 31;9(7):e103767. doi: 10.1371/journal.pone.0103767. eCollection 2014.
4
Replication levels, false presences and the estimation of the presence/absence from eDNA metabarcoding data.
Mol Ecol Resour. 2015 May;15(3):543-56. doi: 10.1111/1755-0998.12338. Epub 2014 Nov 10.
5
Reliable eDNA detection and quantification of the European weather loach (Misgurnus fossilis).
J Fish Biol. 2021 Feb;98(2):399-414. doi: 10.1111/jfb.14315. Epub 2020 Mar 30.
6
Generalized model-based solutions to false-positive error in species detection/nondetection data.
Ecology. 2021 Feb;102(2):e03241. doi: 10.1002/ecy.3241. Epub 2021 Jan 18.
7
Can we manage fisheries with the inherent uncertainty from eDNA?
J Fish Biol. 2021 Feb;98(2):341-353. doi: 10.1111/jfb.14218. Epub 2019 Dec 19.
10
Navigating uncertainty in environmental DNA detection of a nuisance marine macroalga.
PLoS One. 2025 Feb 4;20(2):e0318414. doi: 10.1371/journal.pone.0318414. eCollection 2025.

引用本文的文献

1
No pump, no problem: evaluating passive eDNA sampling for marine biomonitoring of a nuisance macroalga.
PeerJ. 2025 Aug 25;13:e19939. doi: 10.7717/peerj.19939. eCollection 2025.
3
Network dynamics revealed from eDNA highlight seasonal variation in urban mammal communities.
J Anim Ecol. 2025 Aug;94(8):1587-1602. doi: 10.1111/1365-2656.70082. Epub 2025 Jun 17.
5
Navigating uncertainty in environmental DNA detection of a nuisance marine macroalga.
PLoS One. 2025 Feb 4;20(2):e0318414. doi: 10.1371/journal.pone.0318414. eCollection 2025.
6
Field Trials of an Autonomous eDNA Sampler in Lotic Waters.
Environ Sci Technol. 2024 Nov 26;58(47):20942-20953. doi: 10.1021/acs.est.4c04970. Epub 2024 Nov 14.
7
Evaluating eDNA and eRNA metabarcoding for aquatic biodiversity assessment: From bacteria to vertebrates.
Environ Sci Ecotechnol. 2024 Jun 11;21:100441. doi: 10.1016/j.ese.2024.100441. eCollection 2024 Sep.
8
Critical considerations for communicating environmental DNA science.
Environ DNA. 2024 Feb 9;6(1):1-12. doi: 10.1002/edn3.472.
9
Improving the efficiency of adaptive management methods in multiple fishways using environmental DNA.
PLoS One. 2024 Apr 1;19(4):e0301197. doi: 10.1371/journal.pone.0301197. eCollection 2024.
10

本文引用的文献

1
Thermal stratification and fish thermal preference explain vertical eDNA distributions in lakes.
Mol Ecol. 2021 Jul;30(13):3083-3096. doi: 10.1111/mec.15623. Epub 2020 Sep 13.
2
At Palmyra Atoll, the fish-community environmental DNA signal changes across habitats but not with tides.
J Fish Biol. 2021 Feb;98(2):415-425. doi: 10.1111/jfb.14403. Epub 2020 Jun 29.
3
Are Environmental DNA Methods Ready for Aquatic Invasive Species Management?
Trends Ecol Evol. 2020 Aug;35(8):668-678. doi: 10.1016/j.tree.2020.03.011. Epub 2020 May 1.
4
Can we manage fisheries with the inherent uncertainty from eDNA?
J Fish Biol. 2021 Feb;98(2):341-353. doi: 10.1111/jfb.14218. Epub 2019 Dec 19.
5
Environmental DNA is not the tool by itself.
J Fish Biol. 2021 Feb;98(2):383-386. doi: 10.1111/jfb.14177. Epub 2019 Nov 25.
6
Estimating species distribution and abundance in river networks using environmental DNA.
Proc Natl Acad Sci U S A. 2018 Nov 13;115(46):11724-11729. doi: 10.1073/pnas.1813843115. Epub 2018 Oct 29.
7
Controls on eDNA movement in streams: Transport, Retention, and Resuspension.
Sci Rep. 2017 Jul 11;7(1):5065. doi: 10.1038/s41598-017-05223-1.
8
Environmental DNA reveals that rivers are conveyer belts of biodiversity information.
Nat Commun. 2016 Aug 30;7:12544. doi: 10.1038/ncomms12544.
9
Influence of Stream Bottom Substrate on Retention and Transport of Vertebrate Environmental DNA.
Environ Sci Technol. 2016 Aug 16;50(16):8770-9. doi: 10.1021/acs.est.6b01761. Epub 2016 Jul 27.
10
Statistical approaches to account for false-positive errors in environmental DNA samples.
Mol Ecol Resour. 2016 May;16(3):673-85. doi: 10.1111/1755-0998.12486. Epub 2015 Dec 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验