Yang Jing, Jiang Qiuyao, Chen Yu, Wen Quan, Ge Xingwu, Zhu Qiang, Zhao Wei, Adegbite Oluwatobi, Yang Haofan, Luo Liang, Qu Hang, Del-Angel-Hernandez Veronica, Clowes Rob, Gao Jun, Little Marc A, Cooper Andrew I, Liu Lu-Ning
Materials Innovation Factory and Department of Chemistry, University of Liverpool, Liverpool L7 3NY, U.K.
Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 7ZB, U.K.
ACS Catal. 2024 Dec 6;14(24):18603-18614. doi: 10.1021/acscatal.4c03672. eCollection 2024 Dec 20.
Synthetic photobiocatalysts are promising catalysts for valuable chemical transformations by harnessing solar energy inspired by natural photosynthesis. However, the synergistic integration of all of the components for efficient light harvesting, cascade electron transfer, and efficient biocatalytic reactions presents a formidable challenge. In particular, replicating intricate multiscale hierarchical assembly and functional segregation involved in natural photosystems, such as photosystems I and II, remains particularly demanding within artificial structures. Here, we report the bottom-up construction of a visible-light-driven chemical-biological hybrid nanoreactor with augmented photocatalytic efficiency by anchoring an α-carboxysome shell encasing [FeFe]-hydrogenases (H-S) on the surface of a hydrogen-bonded organic molecular crystal, a microporous α-polymorph of 1,3,6,8-tetra(4'-carboxyphenyl)pyrene (TBAP-α). The self-association of this chemical-biological hybrid system is facilitated by hydrogen bonds, as revealed by molecular dynamics simulations. Within this hybrid photobiocatalyst, TBAP-α functions as an antenna for visible-light absorption and exciton generation, supplying electrons for sacrificial hydrogen production by H-S in aqueous solutions. This coordination allows the hybrid nanoreactor, H-S|TBAP-α, to execute hydrogen evolution exclusively driven by light irradiation with a rate comparable to that of photocatalyst-loaded precious cocatalyst. The established approach to constructing new light-driven biocatalysts combines the synergistic power of biological nanotechnology with the multilength-scale structure and functional control offered by supramolecular organic semiconductors. It opens up innovative opportunities for the fabrication of biomimetic nanoreactors for sustainable fuel production and enzymatic reactions.
合成光生物催化剂是一类很有前景的催化剂,可通过利用受自然光合作用启发的太阳能来实现有价值的化学转化。然而,要将所有组件进行协同整合以实现高效的光捕获、级联电子转移和高效的生物催化反应,这是一项艰巨的挑战。特别是,在人工结构中复制自然光系统(如光系统I和II)中涉及的复杂多尺度分级组装和功能分离,仍然极具挑战性。在此,我们报告了一种自下而上构建的可见光驱动的化学-生物混合纳米反应器,通过将包裹[FeFe]-氢化酶(H-S)的α-羧基体壳锚定在氢键有机分子晶体(1,3,6,8-四(4'-羧基苯基)芘(TBAP-α)的微孔α-多晶型物)表面,提高了光催化效率。分子动力学模拟表明,这种化学-生物混合系统通过氢键促进了自组装。在这种混合光生物催化剂中,TBAP-α作为可见光吸收和激子产生的天线,为水溶液中H-S的牺牲性产氢提供电子。这种协同作用使得混合纳米反应器H-S|TBAP-α能够仅在光照射下进行析氢反应,其速率与负载光催化剂的珍贵助催化剂相当。构建新型光驱动生物催化剂的既定方法将生物纳米技术的协同力量与超分子有机半导体提供的多长度尺度结构和功能控制相结合。它为制造用于可持续燃料生产和酶促反应的仿生纳米反应器开辟了创新机会。