Suppr超能文献

基于深度学习推断肺癌的细胞类型特异性基因。

Inferring Cell-type-specific Genes of Lung Cancer Based on Deep Learning.

机构信息

Department of Thoracic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China.

Department of Biological Repositories, Zhongnan Hospital of Wuhan University, Wuhan, China.

出版信息

Curr Gene Ther. 2022;22(5):439-448. doi: 10.2174/1566523222666220324110914.

Abstract

BACKGROUND

Lung cancer is cancer with the highest incidence in the world, and there is obvious heterogeneity within its tumor. The emergence of single-cell sequencing technology allows researchers to obtain cell-type-specific expression genes at the single-cell level, thereby obtaining information regarding the cell status and subpopulation distribution, as well as the communication behavior between cells. Many researchers have applied this technology to lung cancer research, but due to the shortcomings of insufficient sequencing depth, only a small part of the gene expression can be detected. Researchers can only roughly compare whether a few thousand genes are significant in different cell types.

METHODS

To fully explore the expression of all genes in different cell types, we propose a method to predict cell-type-specific genes. This method infers cell-type-specific genes based on the expression levels of genes in different tissues and cells and gene interactions. At present, biological experiments have discovered a large number of cell-type-specific genes, providing a large number of available samples for the application of deep learning methods.

RESULTS

Therefore, we fused Graph Convolutional Network (GCN) with Convolutional Neural Network( CNN) to build, model, and inferred cell-type-specific genes of lung cancer in 8 cell types.

CONCLUSION

This method further analyzes and processes single-cell data and provides a new basis for research on heterogeneity in lung cancer tumor, microenvironment, invasion and metastasis, treatment response, drug resistance, etc.

摘要

背景

肺癌是全球发病率最高的癌症,其肿瘤内存在明显的异质性。单细胞测序技术的出现使研究人员能够在单细胞水平上获得细胞类型特异性表达基因,从而获得有关细胞状态和亚群分布以及细胞间通讯行为的信息。许多研究人员已经将这项技术应用于肺癌研究,但由于测序深度不足的缺点,只能检测到一小部分基因表达。研究人员只能大致比较不同细胞类型中几千个基因是否有显著差异。

方法

为了充分探索不同细胞类型中所有基因的表达情况,我们提出了一种预测细胞类型特异性基因的方法。该方法基于不同组织和细胞中基因的表达水平以及基因相互作用来推断细胞类型特异性基因。目前,生物实验已经发现了大量的细胞类型特异性基因,为深度学习方法的应用提供了大量可用的样本。

结果

因此,我们融合了图卷积网络(GCN)和卷积神经网络(CNN),构建、建模并推断了 8 种细胞类型的肺癌细胞类型特异性基因。

结论

该方法进一步分析和处理单细胞数据,为研究肺癌肿瘤异质性、微环境、侵袭和转移、治疗反应、耐药性等提供了新的依据。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验