Suppr超能文献

深度液相色谱法:一种识别非小细胞肺癌相关基因的新型深度学习方法。

Deep-LC: A Novel Deep Learning Method of Identifying Non-Small Cell Lung Cancer-Related Genes.

作者信息

Li Mo, Meng Guang Xian, Liu Xiao Wei, Ma Tian, Sun Ge, He HongMei

机构信息

Second Affiliated Hospital of Dalian Medical University, Dalian, China.

出版信息

Front Oncol. 2022 Jul 22;12:949546. doi: 10.3389/fonc.2022.949546. eCollection 2022.

Abstract

According to statistics, lung cancer kills 1.8 million people each year and is the main cause of cancer mortality worldwide. Non-small cell lung cancer (NSCLC) accounts for over 85% of all lung cancers. Lung cancer has a strong genetic predisposition, demonstrating that the susceptibility and survival of lung cancer are related to specific genes. Genome-wide association studies (GWASs) and next-generation sequencing have been used to discover genes related to NSCLC. However, many studies ignored the intricate interaction information between gene pairs. In the paper, we proposed a novel deep learning method named Deep-LC for predicting NSCLC-related genes. First, we built a gene interaction network and used graph convolutional networks (GCNs) to extract features of genes and interactions between gene pairs. Then a simple convolutional neural network (CNN) module is used as the decoder to decide whether the gene is related to the disease. Deep-LC is an end-to-end method, and from the evaluation results, we can conclude that Deep-LC performs well in mining potential NSCLC-related genes and performs better than existing state-of-the-art methods.

摘要

据统计,肺癌每年导致180万人死亡,是全球癌症死亡的主要原因。非小细胞肺癌(NSCLC)占所有肺癌的85%以上。肺癌具有很强的遗传易感性,这表明肺癌的易感性和生存率与特定基因有关。全基因组关联研究(GWASs)和下一代测序已被用于发现与NSCLC相关的基因。然而,许多研究忽略了基因对之间复杂的相互作用信息。在本文中,我们提出了一种名为Deep-LC的新型深度学习方法来预测与NSCLC相关的基因。首先,我们构建了一个基因相互作用网络,并使用图卷积网络(GCN)来提取基因特征和基因对之间的相互作用。然后,一个简单的卷积神经网络(CNN)模块被用作解码器来确定该基因是否与疾病相关。Deep-LC是一种端到端的方法,从评估结果来看,我们可以得出结论,Deep-LC在挖掘潜在的NSCLC相关基因方面表现良好,并且比现有的最先进方法表现更好。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6290/9353732/66da43678e7e/fonc-12-949546-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验