Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, MA, USA.
Present Address: The Forsyth Institute, Cambridge, MA, USA.
Microbiome. 2022 Mar 24;10(1):52. doi: 10.1186/s40168-022-01235-w.
Elucidating the spatial structure of host-associated microbial communities is essential for understanding taxon-taxon interactions within the microbiota and between microbiota and host. Macroalgae are colonized by complex microbial communities, suggesting intimate symbioses that likely play key roles in both macroalgal and bacterial biology, yet little is known about the spatial organization of microbes associated with macroalgae. Canopy-forming kelp are ecologically significant, fixing teragrams of carbon per year in coastal kelp forest ecosystems. We characterized the micron-scale spatial organization of bacterial communities on blades of the kelp Nereocystis luetkeana using fluorescence in situ hybridization and spectral imaging with a probe set combining phylum-, class-, and genus-level probes to localize and identify > 90% of the microbial community.
We show that kelp blades host a dense microbial biofilm composed of disparate microbial taxa in close contact with one another. The biofilm is spatially differentiated, with clustered cells of the dominant symbiont Granulosicoccus sp. (Gammaproteobacteria) close to the kelp surface and filamentous Bacteroidetes and Alphaproteobacteria relatively more abundant near the biofilm-seawater interface. A community rich in Bacteroidetes colonized the interior of kelp tissues. Microbial cell density increased markedly along the length of the kelp blade, from sparse microbial colonization of newly produced tissues at the meristematic base of the blade to an abundant microbial biofilm on older tissues at the blade tip. Kelp from a declining population hosted fewer microbial cells compared to kelp from a stable population.
Imaging revealed close association, at micrometer scales, of different microbial taxa with one another and with the host. This spatial organization creates the conditions necessary for metabolic exchange among microbes and between host and microbiota, such as provisioning of organic carbon to the microbiota and impacts of microbial nitrogen metabolisms on host kelp. The biofilm coating the surface of the kelp blade is well-positioned to mediate interactions between the host and surrounding organisms and to modulate the chemistry of the surrounding water column. The high density of microbial cells on kelp blades (10-10 cells/cm), combined with the immense surface area of kelp forests, indicates that biogeochemical functions of the kelp microbiome may play an important role in coastal ecosystems. Video abstract.
阐明宿主相关微生物群落的空间结构对于理解微生物组内的分类群-分类群相互作用以及微生物组与宿主之间的相互作用至关重要。大型藻类被复杂的微生物群落定殖,这表明存在密切的共生关系,这些共生关系可能在大型藻类和细菌生物学中都起着关键作用,但人们对与大型藻类相关的微生物的空间组织知之甚少。冠层形成的巨藻在生态上具有重要意义,每年在沿海巨藻林生态系统中固定 10000 公吨的碳。我们使用荧光原位杂交技术和光谱成像技术,结合一套包含门、纲和属水平探针的探针组,对巨藻 Nereocystis luetkeana 叶片上细菌群落的微米级空间组织进行了描述,以定位和识别 >90%的微生物群落。
我们表明,巨藻叶片上存在一个密集的微生物生物膜,其中包含彼此紧密接触的不同微生物分类群。生物膜具有空间上的分化,优势共生体 Granulosicoccus sp.(变形菌门)的聚集细胞靠近巨藻表面,而丝状的拟杆菌门和α变形菌门在靠近生物膜-海水界面处相对更为丰富。一个富含拟杆菌门的群落定植在巨藻组织内部。微生物细胞密度沿着巨藻叶片的长度显著增加,从叶片基部的分生组织中新产生的组织稀疏的微生物定植到叶片顶端的丰富的微生物生物膜。与来自稳定种群的巨藻相比,来自衰退种群的巨藻宿主的微生物细胞数量较少。
成像揭示了不同微生物分类群彼此之间以及与宿主之间的密切关联,在微米尺度上。这种空间组织为微生物之间以及宿主和微生物群之间的代谢交换创造了必要的条件,例如为微生物群提供有机碳以及微生物氮代谢对宿主巨藻的影响。巨藻叶片表面的生物膜为宿主与周围生物之间的相互作用以及调节周围水柱的化学性质提供了有利条件。巨藻叶片上微生物细胞的高密度(10-10 个细胞/cm),加上巨藻林的巨大表面积,表明巨藻微生物组的生物地球化学功能可能在沿海生态系统中发挥重要作用。视频摘要。