Suppr超能文献

采用外周血白细胞系统通路通量分析对良、恶性肺癌进行早期鉴别诊断。

Differential early diagnosis of benign versus malignant lung cancer using systematic pathway flux analysis of peripheral blood leukocytes.

机构信息

Institute of Molecular Medicine and Experimental Immunology, University Clinic of Rheinische Friedrich-Wilhelms-University, Bonn, Germany.

Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, People's Republic of China.

出版信息

Sci Rep. 2022 Mar 24;12(1):5070. doi: 10.1038/s41598-022-08890-x.

Abstract

Early diagnosis of lung cancer is critically important to reduce disease severity and improve overall survival. Newer, minimally invasive biopsy procedures often fail to provide adequate specimens for accurate tumor subtyping or staging which is necessary to inform appropriate use of molecular targeted therapies and immune checkpoint inhibitors. Thus newer approaches to diagnosis and staging in early lung cancer are needed. This exploratory pilot study obtained peripheral blood samples from 139 individuals with clinically evident pulmonary nodules (benign and malignant), as well as ten healthy persons. They were divided into three cohorts: original cohort (n = 99), control cohort (n = 10), and validation cohort (n = 40). Average RNAseq sequencing of leukocytes in these samples were conducted. Subsequently, data was integrated into artificial intelligence (AI)-based computational approach with system-wide gene expression technology to develop a rapid, effective, non-invasive immune index for early diagnosis of lung cancer. An immune-related index system, IM-Index, was defined and validated for the diagnostic application. IM-Index was applied to assess the malignancies of pulmonary nodules of 109 participants (original + control cohorts) with high accuracy (AUC: 0.822 [95% CI: 0.75-0.91, p < 0.001]), and to differentiate between phases of cancer immunoediting concept (odds ratio: 1.17 [95% CI: 1.1-1.25, p < 0.001]). The predictive ability of IM-Index was validated in a validation cohort with a AUC: 0.883 (95% CI: 0.73-1.00, p < 0.001). The difference between molecular mechanisms of adenocarcinoma and squamous carcinoma histology was also determined via the IM-Index (OR: 1.2 [95% CI 1.14-1.35, p = 0.019]). In addition, a structural metabolic behavior pattern and signaling property in host immunity were found (bonferroni correction, p = 1.32e - 16). Taken together our findings indicate that this AI-based approach may be used for "Super Early" cancer diagnosis and amend the current immunotherpay for lung cancer.

摘要

早期肺癌的诊断对于降低疾病严重程度和提高总体生存率至关重要。较新的、微创的活检程序往往无法提供足够的标本进行准确的肿瘤亚型分类或分期,这对于告知适当使用分子靶向治疗和免疫检查点抑制剂是必要的。因此,需要新的早期肺癌诊断和分期方法。这项探索性试点研究从 139 名有临床明显肺部结节(良性和恶性)的个体以及 10 名健康个体中获得了外周血样本。他们被分为三组:原始队列(n=99)、对照组(n=10)和验证队列(n=40)。对这些样本中的白细胞进行平均 RNAseq 测序。随后,将数据整合到基于人工智能(AI)的计算方法中,并结合系统范围的基因表达技术,开发一种用于早期诊断肺癌的快速、有效、非侵入性免疫指数。定义并验证了一种免疫相关指数系统(IM-Index)用于诊断应用。IM-Index 用于评估 109 名参与者(原始+对照组)肺部结节的恶性程度,具有很高的准确性(AUC:0.822 [95%CI:0.75-0.91,p<0.001]),并区分癌症免疫编辑概念的阶段(优势比:1.17 [95%CI:1.1-1.25,p<0.001])。在验证队列中验证了 IM-Index 的预测能力,AUC:0.883(95%CI:0.73-1.00,p<0.001)。还通过 IM-Index 确定了腺癌和鳞状细胞癌组织学的分子机制差异(OR:1.2 [95%CI 1.14-1.35,p=0.019])。此外,还发现了宿主免疫中的结构代谢行为模式和信号特性(Bonferroni 校正,p=1.32e-16)。总之,我们的研究结果表明,这种基于 AI 的方法可用于“超级早期”癌症诊断,并修改目前的肺癌免疫疗法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验