Department of Psychology, National University of Singapore, 9 Arts Link, Singapore, Singapore.
Department of Psychology, York University, 4700 Keele St., Toronto, ON, Canada.
Psychometrika. 2022 Dec;87(4):1503-1528. doi: 10.1007/s11336-022-09853-x. Epub 2022 Mar 24.
Component-based approaches have been regarded as a tool for dimension reduction to predict outcomes from observed variables in regression applications. Extended redundancy analysis (ERA) is one such component-based approach which reduces predictors to components explaining maximum variance in the outcome variables. In many instances, ERA can be extended to capture nonlinearity and interactions between observed and components, but only by specifying a priori functional form. Meanwhile, machine learning methods like neural networks are typically used in a data-driven manner to capture nonlinearity without specifying the exact functional form. In this paper, we introduce a new method that integrates neural networks algorithms into the framework of ERA, called NN-ERA, to capture any non-specified nonlinear relationships among multiple sets of observed variables for constructing components. Simulations and empirical datasets are used to demonstrate the usefulness of NN-ERA. The conclusion is that in social science datasets with unstructured data, where we expect nonlinear relationships that cannot be specified a priori, NN-ERA with its neural network algorithmic structure can serve as a useful tool to specify and test models otherwise not captured by the conventional component-based models.
基于组件的方法已被视为一种降维工具,可用于从回归应用中观察到的变量预测结果。扩展冗余分析(ERA)是一种基于组件的方法,它将预测因子减少到解释结果变量中最大方差的组件。在许多情况下,可以通过指定先验函数形式将 ERA 扩展到捕获观察到的变量和组件之间的非线性和交互作用。然而,机器学习方法(如神经网络)通常以数据驱动的方式使用,无需指定确切的函数形式即可捕获非线性。在本文中,我们引入了一种新的方法,将神经网络算法集成到 ERA 的框架中,称为 NN-ERA,以捕获多组观察变量之间任何未指定的非线性关系,从而构建组件。我们使用模拟和实际数据集来演示 NN-ERA 的有用性。结论是,在具有非结构化数据的社会科学数据集,其中我们预期存在无法事先指定的非线性关系的情况下,具有神经网络算法结构的 NN-ERA 可以作为一种有用的工具,用于指定和测试无法通过传统基于组件的模型捕获的模型。