Afek Gadi, Carney Daniel, Moore David C
Wright Laboratory, Department of Physics, Yale University, New Haven, Connecticut 06520, USA.
Physics Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA.
Phys Rev Lett. 2022 Mar 11;128(10):101301. doi: 10.1103/PhysRevLett.128.101301.
We propose a search for low mass dark matter particles through momentum recoils caused by their scattering from trapped, nanometer-scale objects. Our projections show that even with a modest array of femtogram-mass sensors, parameter space beyond the reach of existing experiments can be explored. The case of smaller, attogram-mass sensors is also analyzed-where dark matter can coherently scatter from the entire sensor-enabling a large enhancement in the scattering cross-section relative to interactions with single nuclei. Large arrays of such sensors have the potential to investigate new parameter space down to dark matter masses as low as 10 keV. If recoils from dark matter are detected by such sensors, their inherent directional sensitivity would allow an unambiguous identification of a dark matter signal.
我们提议通过捕获的纳米级物体散射所产生的动量反冲来搜寻低质量暗物质粒子。我们的预测表明,即使使用一组适度的飞克质量传感器,也能够探索现有实验无法触及的参数空间。我们还分析了更小的阿托克质量传感器的情况,在这种情况下,暗物质可以与整个传感器发生相干散射,从而使散射截面相对于与单个原子核的相互作用大幅增强。大量这样的传感器阵列有潜力研究新的参数空间,直至低至10 keV的暗物质质量。如果此类传感器检测到来自暗物质的反冲,其固有的方向敏感性将能够明确识别暗物质信号。