Grigorev Georgii V, Nikitin Nikolay O, Hvatov Alexander, Kalyuzhnaya Anna V, Lebedev Alexander V, Wang Xiaohao, Qian Xiang, Maksimov Georgii V, Lin Liwei
Data Science and Information Technology Research Center, Tsinghua Berkeley Shenzhen Institute, Tsinghua University, Shenzhen 518055, China.
Mechanical Department, University of California in Berkeley, Berkeley, CA 94703, USA.
Micromachines (Basel). 2022 Feb 26;13(3):367. doi: 10.3390/mi13030367.
This paper describes a generative design methodology for a micro hydrodynamic single-RBC (red blood cell) trap for applications in microfluidics-based single-cell analysis. One key challenge in single-cell microfluidic traps is to achieve desired through-slit flowrates to trap cells under implicit constraints. In this work, the cell-trapping design with validation from experimental data has been developed by the generative design methodology with an evolutionary algorithm. L-shaped trapping slits have been generated iteratively for the optimal geometries to trap living-cells suspended in flow channels. Without using the generative design, the slits have low flow velocities incapable of trapping single cells. After a search with 30,000 solutions, the optimized geometry was found to increase the through-slit velocities by 49%. Fabricated and experimentally tested prototypes have achieved 4 out of 4 trapping efficiency of RBCs. This evolutionary algorithm and trapping design can be applied to cells of various sizes.
本文描述了一种用于微流体单细胞分析的微流体单红细胞(RBC)捕获器的生成式设计方法。单细胞微流体捕获器的一个关键挑战是在隐含约束条件下实现所需的通缝流速以捕获细胞。在这项工作中,通过带有进化算法的生成式设计方法,开发了具有实验数据验证的细胞捕获设计。已迭代生成L形捕获狭缝以获得捕获悬浮在流动通道中的活细胞的最佳几何形状。如果不使用生成式设计,狭缝的流速较低,无法捕获单细胞。在对30000个解决方案进行搜索后,发现优化后的几何形状可使通缝速度提高49%。制造并经过实验测试的原型实现了红细胞4/4的捕获效率。这种进化算法和捕获设计可应用于各种大小的细胞。