Suppr超能文献

基于改进的花授粉算法的脑电通道选择用户识别方法

EEG Channel Selection Based User Identification via Improved Flower Pollination Algorithm.

作者信息

Alyasseri Zaid Abdi Alkareem, Alomari Osama Ahmad, Papa João P, Al-Betar Mohammed Azmi, Abdulkareem Karrar Hameed, Mohammed Mazin Abed, Kadry Seifedine, Thinnukool Orawit, Khuwuthyakorn Pattaraporn

机构信息

ECE Department, Faculty of Engineering, University of Kufa, Najaf 54001, Iraq.

Information Technology Research and Development Center (ITRDC), University of Kufa, Najaf 54001, Iraq.

出版信息

Sensors (Basel). 2022 Mar 8;22(6):2092. doi: 10.3390/s22062092.

Abstract

The electroencephalogram (EEG) introduced a massive potential for user identification. Several studies have shown that EEG provides unique features in addition to typical strength for spoofing attacks. EEG provides a graphic recording of the brain's electrical activity that electrodes can capture on the scalp at different places. However, selecting which electrodes should be used is a challenging task. Such a subject is formulated as an electrode selection task that is tackled by optimization methods. In this work, a new approach to select the most representative electrodes is introduced. The proposed algorithm is a hybrid version of the Flower Pollination Algorithm and β-Hill Climbing optimizer called FPAβ-hc. The performance of the FPAβ-hc algorithm is evaluated using a standard EEG motor imagery dataset. The experimental results show that the FPAβ-hc can utilize less than half of the electrode numbers, achieving more accurate results than seven other methods.

摘要

脑电图(EEG)为用户识别带来了巨大潜力。多项研究表明,除了在应对欺骗攻击方面具有典型优势外,EEG还能提供独特特征。EEG提供了大脑电活动的图形记录,电极可在头皮不同部位捕捉到这种电活动。然而,选择使用哪些电极是一项具有挑战性的任务。这样一个问题被表述为一个电极选择任务,可通过优化方法来解决。在这项工作中,引入了一种选择最具代表性电极的新方法。所提出的算法是花粉传播算法和β-爬山优化器的混合版本,称为FPAβ-hc。使用标准的EEG运动想象数据集对FPAβ-hc算法的性能进行了评估。实验结果表明,FPAβ-hc算法能够使用不到一半的电极数量,比其他七种方法取得更准确结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e3e3/8951312/07ca6dc6dcff/sensors-22-02092-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验