Suppr超能文献

基于 FC 的工业医疗物联网的轻量级混合深度学习隐私保护模型。

A Lightweight Hybrid Deep Learning Privacy Preserving Model for FC-Based Industrial Internet of Medical Things.

机构信息

Department of Computer Networks and Communications, College of Computer Sciences and Information Technology, King Faisal University, Al-Ahsa 31982, Saudi Arabia.

School of Information Technology, Monash University, Subang Jaya 47500, Malaysia.

出版信息

Sensors (Basel). 2022 Mar 9;22(6):2112. doi: 10.3390/s22062112.

Abstract

The Industrial Internet of Things (IIoT) is gaining importance as most technologies and applications are integrated with the IIoT. Moreover, it consists of several tiny sensors to sense the environment and gather the information. These devices continuously monitor, collect, exchange, analyze, and transfer the captured data to nearby devices or servers using an open channel, i.e., internet. However, such centralized system based on IIoT provides more vulnerabilities to security and privacy in IIoT networks. In order to resolve these issues, we present a blockchain-based deep-learning framework that provides two levels of security and privacy. First a blockchain scheme is designed where each participating entities are registered, verified, and thereafter validated using smart contract based enhanced Proof of Work, to achieve the target of security and privacy. Second, a deep-learning scheme with a Variational AutoEncoder (VAE) technique for privacy and Bidirectional Long Short-Term Memory (BiLSTM) for intrusion detection is designed. The experimental results are based on the IoT-Botnet and ToN-IoT datasets that are publicly available. The proposed simulations results are compared with the benchmark models and it is validated that the proposed framework outperforms the existing system.

摘要

工业物联网(IIoT)变得越来越重要,因为大多数技术和应用都与 IIoT 集成在一起。此外,它由许多微小的传感器组成,用于感知环境并收集信息。这些设备使用开放通道(即互联网)不断监控、收集、交换、分析和传输捕获的数据到附近的设备或服务器。然而,基于 IIoT 的这种集中式系统为 IIoT 网络的安全性和隐私性提供了更多的漏洞。为了解决这些问题,我们提出了一个基于区块链的深度学习框架,该框架提供了两个级别的安全性和隐私性。首先设计了一个区块链方案,其中每个参与的实体都使用基于智能合约的增强工作证明进行注册、验证和验证,以实现安全性和隐私性的目标。其次,设计了一种具有变分自动编码器(VAE)技术的隐私和双向长短期记忆(BiLSTM)的深度学习方案,用于入侵检测。实验结果基于公开可用的 IoT-Botnet 和 ToN-IoT 数据集。将提出的模拟结果与基准模型进行比较,并验证了所提出的框架优于现有系统。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2126/8953567/8d9120db0166/sensors-22-02112-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验