Alduailij Mai
Computer Sciences Department, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, Riyadh, 11671, Saudi Arabia.
Sci Rep. 2025 Aug 10;15(1):29241. doi: 10.1038/s41598-025-15005-9.
The Internet of Things (IoT) plays a significant part in the healthcare field. The growth of smart devices, smart sensors, and advanced lightweight communication protocols has created an opportunity to connect medical devices for monitoring biomedical signals and identifying patients' illnesses without human involvement, known as the Internet of Medical Things (IoMT). The IoMT enables a medical method to connect various smart devices, such as hospital assets, wearable sensors, and medical examination instruments, to create an information platform. In recent times, the IoMT has been extensively utilized in various areas, including disease diagnosis, smart hospitals, infectious disease tracking, and remote health monitoring. Still, safety is one of the key requirements for the success of IoMT systems. Thus, at present, deep learning (DL) is considered a safe IoMT system, as it can enhance the system's performance. In this manuscript, the Ensemble of Deep Learning and Metaheuristic Optimisation algorithms for the Critical Health Monitoring (EDLMOA-CHM) technique is proposed. The EDLMOA-CHM technique aims to develop and evaluate effective methods for monitoring health conditions in the IoMT to enhance healthcare system security and patient safety. Initially, the Z-score normalization method is employed in the data pre-processing step to clean, transform, and organize raw data into an appropriate format. For the feature selection process, the binary grey wolf optimization (BGWO) model is employed to identify and retain the most significant features in the dataset. The classification process utilizes ensemble models, including the Temporal Convolutional Network (TCN), the Attention-based Bidirectional Gated Recurrent Unit (A-BiGRU), and the Hybrid Deep Belief Network (HDBN) techniques. To further optimize model performance, the pelican optimization algorithm (POA) is utilized for hyperparameter tuning to ensure that the optimum hyperparameters are chosen for enhanced accuracy. To demonstrate the improved performance of the EDLMOA-CHM model, a comprehensive experimental analysis is conducted using the healthcare IoT dataset. The comparison analysis of the EDLMOA-CHM model demonstrated a superior accuracy value of 99.56% over existing techniques.
物联网(IoT)在医疗保健领域发挥着重要作用。智能设备、智能传感器和先进的轻量级通信协议的发展创造了一个机会,无需人工干预即可连接医疗设备以监测生物医学信号并识别患者疾病,这被称为医疗物联网(IoMT)。IoMT使一种医疗方法能够连接各种智能设备,如医院资产、可穿戴传感器和医疗检查仪器,以创建一个信息平台。近年来,IoMT已被广泛应用于各个领域,包括疾病诊断、智能医院、传染病追踪和远程健康监测。然而,安全性是IoMT系统成功的关键要求之一。因此,目前深度学习(DL)被认为是一种安全的IoMT系统,因为它可以提高系统性能。在本文中,提出了用于关键健康监测的深度学习与元启发式优化算法集成(EDLMOA-CHM)技术。EDLMOA-CHM技术旨在开发和评估用于监测IoMT中健康状况的有效方法,以提高医疗保健系统安全性和患者安全性。最初,在数据预处理步骤中采用Z分数归一化方法来清理、转换并将原始数据整理成适当的格式。对于特征选择过程,采用二进制灰狼优化(BGWO)模型来识别并保留数据集中最重要的特征。分类过程利用集成模型,包括时间卷积网络(TCN)、基于注意力的双向门控循环单元(A-BiGRU)和混合深度信念网络(HDBN)技术。为了进一步优化模型性能,利用鹈鹕优化算法(POA)进行超参数调整,以确保选择最优超参数以提高准确性。为了证明EDLMOA-CHM模型的改进性能,使用医疗物联网数据集进行了全面的实验分析。EDLMOA-CHM模型的比较分析表明,其准确率高达99.56%,优于现有技术。