Suppr超能文献

支持帕金森病临床试验中数字健康技术部署的元数据框架

Metadata Framework to Support Deployment of Digital Health Technologies in Clinical Trials in Parkinson's Disease.

作者信息

Hill Derek L, Stephenson Diane, Brayanov Jordan, Claes Kasper, Badawy Reham, Sardar Sakshi, Fisher Katherine, Lee Susan J, Bannon Anthony, Roussos George, Kangarloo Tairmae, Terebaite Viktorija, Müller Martijn L T M, Bhatnagar Roopal, Adams Jamie L, Dorsey E Ray, Cosman Josh

机构信息

Panoramic Digital Health, 38000 Grenoble, France.

Centre for Medical Imaging, University College London (UCL), London WC1E 6BT, UK.

出版信息

Sensors (Basel). 2022 Mar 9;22(6):2136. doi: 10.3390/s22062136.

Abstract

Sensor data from digital health technologies (DHTs) used in clinical trials provides a valuable source of information, because of the possibility to combine datasets from different studies, to combine it with other data types, and to reuse it multiple times for various purposes. To date, there exist no standards for capturing or storing DHT biosensor data applicable across modalities and disease areas, and which can also capture the clinical trial and environment-specific aspects, so-called metadata. In this perspectives paper, we propose a metadata framework that divides the DHT metadata into metadata that is independent of the therapeutic area or clinical trial design (concept of interest and context of use), and metadata that is dependent on these factors. We demonstrate how this framework can be applied to data collected with different types of DHTs deployed in the WATCH-PD clinical study of Parkinson's disease. This framework provides a means to pre-specify and therefore standardize aspects of the use of DHTs, promoting comparability of DHTs across future studies.

摘要

临床试验中使用的数字健康技术(DHT)的传感器数据提供了宝贵的信息来源,因为有可能将来自不同研究的数据集进行合并,将其与其他数据类型相结合,并多次重复使用以实现各种目的。迄今为止,尚无适用于跨模式和疾病领域的DHT生物传感器数据捕获或存储的标准,这些标准还可以捕获临床试验和特定环境方面的信息,即所谓的元数据。在这篇观点论文中,我们提出了一个元数据框架,该框架将DHT元数据分为与治疗领域或临床试验设计无关的元数据(感兴趣的概念和使用背景)以及依赖于这些因素的元数据。我们展示了该框架如何应用于帕金森病WATCH-PD临床研究中部署的不同类型DHT收集的数据。该框架提供了一种预先指定并因此规范DHT使用方面的方法,促进了未来研究中DHT的可比性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/407b/8954603/662e546104fd/sensors-22-02136-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验