Suppr超能文献

原子力显微镜对细胞和组织的力感应。

Force Sensing on Cells and Tissues by Atomic Force Microscopy.

机构信息

CIMAINA and Dipartimento di Fisica "Aldo Pontremoli", Università degli Studi di Milano, Via Celoria 16, 20133 Milan, Italy.

Department of Research, Fondazione IRCCS Istituto Nazionale Tumori, Via G. Venezian 1, 20133 Milan, Italy.

出版信息

Sensors (Basel). 2022 Mar 11;22(6):2197. doi: 10.3390/s22062197.

Abstract

Biosensors are aimed at detecting tiny physical and chemical stimuli in biological systems. Physical forces are ubiquitous, being implied in all cellular processes, including cell adhesion, migration, and differentiation. Given the strong interplay between cells and their microenvironment, the extracellular matrix (ECM) and the structural and mechanical properties of the ECM play an important role in the transmission of external stimuli to single cells within the tissue. Vice versa, cells themselves also use self-generated forces to probe the biophysical properties of the ECM. ECM mechanics influence cell fate, regulate tissue development, and show peculiar features in health and disease conditions of living organisms. Force sensing in biological systems is therefore crucial to dissecting and understanding complex biological processes, such as mechanotransduction. Atomic Force Microscopy (AFM), which can both sense and apply forces at the nanoscale, with sub-nanonewton sensitivity, represents an enabling technology and a crucial experimental tool in biophysics and mechanobiology. In this work, we report on the application of AFM to the study of biomechanical fingerprints of different components of biological systems, such as the ECM, the whole cell, and cellular components, such as the nucleus, lamellipodia and the glycocalyx. We show that physical observables such as the (spatially resolved) Young's Modulus (YM) of elasticity of ECMs or cells, and the effective thickness and stiffness of the glycocalyx, can be quantitatively characterized by AFM. Their modification can be correlated to changes in the microenvironment, physio-pathological conditions, or gene regulation.

摘要

生物传感器旨在检测生物系统中的微小物理和化学刺激。物理力无处不在,存在于所有细胞过程中,包括细胞黏附、迁移和分化。鉴于细胞与其微环境之间的强烈相互作用,细胞外基质 (ECM) 及其结构和机械特性在将外部刺激传递到组织内的单个细胞方面起着重要作用。反过来,细胞本身也利用自生成的力来探测 ECM 的生物物理特性。ECM 力学影响细胞命运、调节组织发育,并在生物体的健康和疾病状态下表现出特殊特征。因此,力感测对于剖析和理解复杂的生物学过程(如力学转导)至关重要。原子力显微镜 (AFM) 具有纳米级的力感应和施加能力,具有亚纳牛顿的灵敏度,是生物物理学和机械生物学中的一种使能技术和关键实验工具。在这项工作中,我们报告了 AFM 在研究生物系统的不同成分的生物力学特征中的应用,例如细胞外基质 (ECM)、整个细胞以及细胞成分,如核、片状伪足和糖萼。我们表明,物理可观察量,如 ECM 或细胞的(空间分辨)杨氏模量 (YM)、糖萼的有效厚度和刚度,可以通过 AFM 进行定量表征。它们的变化可以与微环境的变化、生理病理条件或基因调控相关联。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7d2e/8955449/c064baab8f3e/sensors-22-02197-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验