Nazeer Nakash, Groves Roger M, Benedictus Rinze
Aerospace NDT Laboratory, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands.
Structural Integrity & Composites, Faculty of Aerospace Engineering, Delft University of Technology, Kluyverweg 1, 2629 HS Delft, The Netherlands.
Sensors (Basel). 2022 Mar 12;22(6):2210. doi: 10.3390/s22062210.
In this paper, with the final aim of shape sensing for a morphing aircraft wing section, a developed multimodal shape sensing system is analysed. We utilise the method of interrogating a morphing wing section based on the principles of both hybrid interferometry and Fibre Bragg Grating (FBG) spectral sensing described in our previous work. The focus of this work is to assess the measurement performance and analyse the errors in the shape sensing system. This includes an estimation of the bending and torsional deformations of an aluminium mock-up section due to static loading that imitates the behaviour of a morphing wing trailing edge. The analysis involves using a detailed calibration procedure and a multimodal sensing algorithm to measure the deflection and shape. The method described In this paper, uses a standard single core optical fibre and two grating pairs on both the top and bottom surfaces of the morphing section. A study on the fibre placement and recommendations for efficient monitoring is also included. The analysis yielded a maximum deflection sensing error of 0.7 mm for a 347 × 350 mm wing section.
在本文中,以对变形飞机机翼截面进行形状传感为最终目标,对一种已开发的多模态形状传感系统进行了分析。我们采用了基于我们之前工作中描述的混合干涉测量法和光纤布拉格光栅(FBG)光谱传感原理来询问变形机翼截面的方法。这项工作的重点是评估测量性能并分析形状传感系统中的误差。这包括估计由于模拟变形机翼后缘行为的静态载荷而导致的铝制模型截面的弯曲和扭转变形。分析涉及使用详细的校准程序和多模态传感算法来测量挠度和形状。本文所述方法使用标准单芯光纤以及在变形截面的顶面和底面各有两对光栅。还包括对光纤布置的研究以及有效监测的建议。对于一个347×350毫米的机翼截面,分析得出的最大挠度传感误差为0.7毫米。