Suppr超能文献

脑卒中后上肢活动不同方面的决定因素。

Determinants of Different Aspects of Upper-Limb Activity after Stroke.

机构信息

Department of Rehabilitation Sciences, KU Leuven, 3001 Leuven, Belgium.

Hammel Neurorehabilitation Centre and University Research Clinic, 8450 Hammel, Denmark.

出版信息

Sensors (Basel). 2022 Mar 15;22(6):2273. doi: 10.3390/s22062273.

Abstract

We examined factors associated with different aspects of upper-limb (UL) activity in chronic stroke to better understand and improve UL activity in daily life. Three different aspects of UL activity were represented by four sensor measures: (1) contribution to activity according to activity ratio and magnitude ratio, (2) intensity of activity according to bilateral magnitude, and (3) variability of activity according to variation ratio. We combined data from a Belgian and Danish patient cohort (n = 126) and developed four models to determine associated factors for each sensor measure. Results from standard multiple regression show that motor impairment (Fugl−Meyer assessment) accounted for the largest part of the explained variance in all sensor measures (18−61%), with less motor impairment resulting in higher UL activity values (p < 0.001). Higher activity ratio, magnitude ratio, and variation ratio were further explained by having the dominant hand affected (p < 0.007). Bilateral magnitude had the lowest explained variance (adjusted R2 = 0.376), and higher values were further associated with being young and female. As motor impairment and biological aspects accounted for only one- to two-thirds of the variance in UL activity, rehabilitation including behavioral strategies might be important to increase the different aspects of UL activity.

摘要

我们研究了与慢性中风患者上肢(UL)活动不同方面相关的因素,以更好地理解和改善日常生活中的 UL 活动。UL 活动的三个不同方面由四个传感器测量值表示:(1)根据活动比和幅度比对活动的贡献,(2)根据双边幅度的活动强度,以及(3)根据变化比的活动可变性。我们结合了来自比利时和丹麦患者队列的数据(n=126),并为每个传感器测量值开发了四个模型来确定相关因素。标准多元回归的结果表明,运动障碍(Fugl-Meyer 评估)占所有传感器测量值(18-61%)的最大解释方差,运动障碍程度越低,UL 活动值越高(p<0.001)。优势手受到影响进一步解释了较高的活动比、幅度比和变化比(p<0.007)。双边幅度的解释方差最低(调整后的 R2=0.376),更高的值与年龄较小和女性有关。由于运动障碍和生物学方面仅占 UL 活动方差的三分之一到三分之二,因此包括行为策略的康复可能对于增加 UL 活动的不同方面很重要。

相似文献

4
Prediction of Upper Limb use Three Months after Stroke: A Prospective Longitudinal Study.脑卒中后三个月上肢使用的预测:一项前瞻性纵向研究。
J Stroke Cerebrovasc Dis. 2021 Nov;30(11):106025. doi: 10.1016/j.jstrokecerebrovasdis.2021.106025. Epub 2021 Aug 28.

本文引用的文献

2
Prediction of Upper Limb use Three Months after Stroke: A Prospective Longitudinal Study.脑卒中后三个月上肢使用的预测:一项前瞻性纵向研究。
J Stroke Cerebrovasc Dis. 2021 Nov;30(11):106025. doi: 10.1016/j.jstrokecerebrovasdis.2021.106025. Epub 2021 Aug 28.
3
Recovery and Prediction of Bimanual Hand Use After Stroke.脑卒中后手的双侧使用的恢复和预测。
Neurology. 2021 Aug 17;97(7):e706-e719. doi: 10.1212/WNL.0000000000012366. Epub 2021 Jun 14.
7
A conceptual framework for prognostic research.预后研究的概念框架。
BMC Med Res Methodol. 2020 Jun 29;20(1):172. doi: 10.1186/s12874-020-01050-7.
8
Predictors of Arm Nonuse in Chronic Stroke: A Preliminary Investigation.慢性脑卒中患者上肢失用的预测因素:初步研究。
Neurorehabil Neural Repair. 2020 Jun;34(6):512-522. doi: 10.1177/1545968320913554. Epub 2020 Jun 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验