Suppr超能文献

使用超宽带雷达监测 VMAT 治疗中的呼吸运动。

Monitoring Respiratory Motion during VMAT Treatment Delivery Using Ultra-Wideband Radar.

机构信息

School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada.

Department of Radiology, Division of Medical Physics, Faculty of Medicine, University of Ottawa, 501 Smyth Road, Box 232, Ottawa, ON K1H 8L6, Canada.

出版信息

Sensors (Basel). 2022 Mar 16;22(6):2287. doi: 10.3390/s22062287.

Abstract

The goal of this paper is to evaluate the potential of a low-cost, ultra-wideband radar system for detecting and monitoring respiratory motion during radiation therapy treatment delivery. Radar signals from breathing motion patterns simulated using a respiratory motion phantom were captured during volumetric modulated arc therapy (VMAT) delivery. Gantry motion causes strong interference affecting the quality of the extracted respiration motion signal. We developed an artificial neural network (ANN) model for recovering the breathing motion patterns. Next, automated classification into four classes of breathing amplitudes is performed, including no breathing, breath hold, free breathing and deep inspiration. Breathing motion patterns extracted from the radar signal are in excellent agreement with the reference data recorded by the respiratory motion phantom. The classification accuracy of simulated deep inspiration breath hold breathing was 94% under the worst case interference from gantry motion and linac operation. Ultra-wideband radar systems can achieve accurate breathing rate estimation in real-time during dynamic radiation delivery. This technology serves as a viable alternative to motion detection and respiratory gating systems based on surface detection, and is well-suited to dynamic radiation treatment techniques. Novelties of this work include detection of the breathing signal using radar during strong interference from simultaneous gantry motion, and using ANN to perform adaptive signal processing to recover breathing signal from large interference signals in real time.

摘要

本文旨在评估低成本、超宽带雷达系统在放射治疗过程中检测和监测呼吸运动的潜力。使用呼吸运动体模模拟的呼吸运动模式的雷达信号在容积调强弧形治疗(VMAT)输送过程中被捕获。机架运动会产生强烈的干扰,影响提取的呼吸运动信号的质量。我们开发了一种人工神经网络(ANN)模型来恢复呼吸运动模式。接下来,自动对呼吸幅度分为四类进行分类,包括无呼吸、屏气、自由呼吸和深呼吸。从雷达信号中提取的呼吸运动模式与呼吸运动体模记录的参考数据非常吻合。在机架运动和直线加速器运行的最严重干扰情况下,模拟的深呼吸屏气呼吸的分类准确率为 94%。超宽带雷达系统可以在动态放射治疗过程中实时实现精确的呼吸率估计。这项技术可作为基于表面检测的运动检测和呼吸门控系统的可行替代方案,非常适合动态放射治疗技术。这项工作的新颖之处在于,在同时发生的机架运动产生的强烈干扰下使用雷达检测呼吸信号,并使用人工神经网络实时执行自适应信号处理,从大干扰信号中恢复呼吸信号。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0c04/8954556/25aa8fda5072/sensors-22-02287-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验