College of Computer Science and Engineering, Northwest Normal University, Lanzhou 730070, China.
Gansu Province Internet of Things Engineering Research Center, Lanzhou 730070, China.
Sensors (Basel). 2024 Jul 2;24(13):4315. doi: 10.3390/s24134315.
Breathing is one of the body's most basic functions and abnormal breathing can indicate underlying cardiopulmonary problems. Monitoring respiratory abnormalities can help with early detection and reduce the risk of cardiopulmonary diseases. In this study, a 77 GHz frequency-modulated continuous wave (FMCW) millimetre-wave (mmWave) radar was used to detect different types of respiratory signals from the human body in a non-contact manner for respiratory monitoring (RM). To solve the problem of noise interference in the daily environment on the recognition of different breathing patterns, the system utilised breathing signals captured by the millimetre-wave radar. Firstly, we filtered out most of the static noise using a signal superposition method and designed an elliptical filter to obtain a more accurate image of the breathing waveforms between 0.1 Hz and 0.5 Hz. Secondly, combined with the histogram of oriented gradient (HOG) feature extraction algorithm, K-nearest neighbours (KNN), convolutional neural network (CNN), and HOG support vector machine (G-SVM) were used to classify four breathing modes, namely, normal breathing, slow and deep breathing, quick breathing, and meningitic breathing. The overall accuracy reached up to 94.75%. Therefore, this study effectively supports daily medical monitoring.
呼吸是人体最基本的功能之一,异常的呼吸可能表明存在心肺问题。监测呼吸异常有助于早期发现,降低心肺疾病的风险。本研究采用 77GHz 调频连续波(FMCW)毫米波(mmWave)雷达,以非接触方式检测人体的不同类型呼吸信号,用于呼吸监测(RM)。为了解决日常环境中噪声干扰对不同呼吸模式识别的问题,该系统利用毫米波雷达捕获的呼吸信号。首先,我们使用信号叠加方法滤除大部分静态噪声,并设计了一个椭圆滤波器,以在 0.1Hz 到 0.5Hz 之间获得更准确的呼吸波形图像。其次,结合方向梯度直方图(HOG)特征提取算法、K 最近邻(KNN)、卷积神经网络(CNN)和 HOG 支持向量机(G-SVM),对正常呼吸、缓慢深呼吸、快速呼吸和脑膜炎呼吸四种呼吸模式进行分类,总体准确率高达 94.75%。因此,本研究为日常医疗监测提供了有力支持。
Sensors (Basel). 2024-7-2
IEEE Trans Biomed Circuits Syst. 2022-8
IEEE J Biomed Health Inform. 2018-3-22
Sensors (Basel). 2022-10-25
Sensors (Basel). 2022-10-5
Sensors (Basel). 2019-7-30
Sensors (Basel). 2020-5-25
Sensors (Basel). 2024-4-11
Sensors (Basel). 2025-6-13
IEEE J Biomed Health Inform. 2024-3
Sensors (Basel). 2021-10-12
Sensors (Basel). 2020-11-22
Sensors (Basel). 2020-7-13