文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

毫米波 RM:基于毫米波雷达的呼吸监测与模式分类系统。

mmWave-RM: A Respiration Monitoring and Pattern Classification System Based on mmWave Radar.

机构信息

College of Computer Science and Engineering, Northwest Normal University, Lanzhou 730070, China.

Gansu Province Internet of Things Engineering Research Center, Lanzhou 730070, China.

出版信息

Sensors (Basel). 2024 Jul 2;24(13):4315. doi: 10.3390/s24134315.


DOI:10.3390/s24134315
PMID:39001094
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11243972/
Abstract

Breathing is one of the body's most basic functions and abnormal breathing can indicate underlying cardiopulmonary problems. Monitoring respiratory abnormalities can help with early detection and reduce the risk of cardiopulmonary diseases. In this study, a 77 GHz frequency-modulated continuous wave (FMCW) millimetre-wave (mmWave) radar was used to detect different types of respiratory signals from the human body in a non-contact manner for respiratory monitoring (RM). To solve the problem of noise interference in the daily environment on the recognition of different breathing patterns, the system utilised breathing signals captured by the millimetre-wave radar. Firstly, we filtered out most of the static noise using a signal superposition method and designed an elliptical filter to obtain a more accurate image of the breathing waveforms between 0.1 Hz and 0.5 Hz. Secondly, combined with the histogram of oriented gradient (HOG) feature extraction algorithm, K-nearest neighbours (KNN), convolutional neural network (CNN), and HOG support vector machine (G-SVM) were used to classify four breathing modes, namely, normal breathing, slow and deep breathing, quick breathing, and meningitic breathing. The overall accuracy reached up to 94.75%. Therefore, this study effectively supports daily medical monitoring.

摘要

呼吸是人体最基本的功能之一,异常的呼吸可能表明存在心肺问题。监测呼吸异常有助于早期发现,降低心肺疾病的风险。本研究采用 77GHz 调频连续波(FMCW)毫米波(mmWave)雷达,以非接触方式检测人体的不同类型呼吸信号,用于呼吸监测(RM)。为了解决日常环境中噪声干扰对不同呼吸模式识别的问题,该系统利用毫米波雷达捕获的呼吸信号。首先,我们使用信号叠加方法滤除大部分静态噪声,并设计了一个椭圆滤波器,以在 0.1Hz 到 0.5Hz 之间获得更准确的呼吸波形图像。其次,结合方向梯度直方图(HOG)特征提取算法、K 最近邻(KNN)、卷积神经网络(CNN)和 HOG 支持向量机(G-SVM),对正常呼吸、缓慢深呼吸、快速呼吸和脑膜炎呼吸四种呼吸模式进行分类,总体准确率高达 94.75%。因此,本研究为日常医疗监测提供了有力支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4c/11243972/4b97b2de752d/sensors-24-04315-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4c/11243972/d2e338ed6492/sensors-24-04315-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4c/11243972/74ea02a50293/sensors-24-04315-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4c/11243972/04ec4954e42d/sensors-24-04315-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4c/11243972/a17169016215/sensors-24-04315-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4c/11243972/109ed926415b/sensors-24-04315-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4c/11243972/6f6829f1af36/sensors-24-04315-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4c/11243972/d5abebe9ea64/sensors-24-04315-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4c/11243972/1021c1d464f4/sensors-24-04315-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4c/11243972/2203b0e4af06/sensors-24-04315-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4c/11243972/107422441aec/sensors-24-04315-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4c/11243972/0f6764085077/sensors-24-04315-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4c/11243972/2a019f59a9db/sensors-24-04315-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4c/11243972/8c4776144e5d/sensors-24-04315-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4c/11243972/ca89ab657da7/sensors-24-04315-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4c/11243972/8b20cca293eb/sensors-24-04315-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4c/11243972/4b97b2de752d/sensors-24-04315-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4c/11243972/d2e338ed6492/sensors-24-04315-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4c/11243972/74ea02a50293/sensors-24-04315-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4c/11243972/04ec4954e42d/sensors-24-04315-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4c/11243972/a17169016215/sensors-24-04315-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4c/11243972/109ed926415b/sensors-24-04315-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4c/11243972/6f6829f1af36/sensors-24-04315-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4c/11243972/d5abebe9ea64/sensors-24-04315-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4c/11243972/1021c1d464f4/sensors-24-04315-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4c/11243972/2203b0e4af06/sensors-24-04315-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4c/11243972/107422441aec/sensors-24-04315-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4c/11243972/0f6764085077/sensors-24-04315-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4c/11243972/2a019f59a9db/sensors-24-04315-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4c/11243972/8c4776144e5d/sensors-24-04315-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4c/11243972/ca89ab657da7/sensors-24-04315-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4c/11243972/8b20cca293eb/sensors-24-04315-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4c4c/11243972/4b97b2de752d/sensors-24-04315-g016.jpg

相似文献

[1]
mmWave-RM: A Respiration Monitoring and Pattern Classification System Based on mmWave Radar.

Sensors (Basel). 2024-7-2

[2]
Analysis of Signal Processing Methods to Reject the DC Offset Contribution of Static Reflectors in FMCW Radar-Based Vital Signs Monitoring.

Sensors (Basel). 2022-12-10

[3]
Frequency-Modulated Continuous Wave Radar Respiratory Pattern Detection Technology Based on Multifeature.

J Healthc Eng. 2021

[4]
Non-Contact Supervision of COVID-19 Breathing Behaviour With FMCW Radar and Stacked Ensemble Learning Model in Real-Time.

IEEE Trans Biomed Circuits Syst. 2022-8

[5]
A Noncontact Breathing Disorder Recognition System Using 2.4-GHz Digital-IF Doppler Radar.

IEEE J Biomed Health Inform. 2018-3-22

[6]
Non-Contact VITAL Signs Monitoring of a Patient Lying on Surgical Bed Using Beamforming FMCW Radar.

Sensors (Basel). 2022-10-25

[7]
High-Precision Vital Signs Monitoring Method Using a FMCW Millimeter-Wave Sensor.

Sensors (Basel). 2022-10-5

[8]
A Novel Human Respiration Pattern Recognition Using Signals of Ultra-Wideband Radar Sensor.

Sensors (Basel). 2019-7-30

[9]
Remote Monitoring of Human Vital Signs Based on 77-GHz mm-Wave FMCW Radar.

Sensors (Basel). 2020-5-25

[10]
Respiration and Heart Rate Monitoring in Smart Homes: An Angular-Free Approach with an FMCW Radar.

Sensors (Basel). 2024-4-11

引用本文的文献

[1]
A Comprehensive Survey of Research Trends in mmWave Technologies for Medical Applications.

Sensors (Basel). 2025-6-13

本文引用的文献

[1]
Contactless Respiration Monitoring Using Wi-Fi and Artificial Neural Network Detection Method.

IEEE J Biomed Health Inform. 2024-3

[2]
Detection of Multiple Respiration Patterns Based on 1D SNN from Continuous Human Breathing Signals and the Range Classification Method for Each Respiration Pattern.

Sensors (Basel). 2023-6-1

[3]
Optical Monitoring of Breathing Patterns and Tissue Oxygenation: A Potential Application in COVID-19 Screening and Monitoring.

Sensors (Basel). 2022-9-26

[4]
A Real-Time Respiration Monitoring and Classification System Using a Depth Camera and Radars.

Front Physiol. 2022-3-9

[5]
Improving Machine Learning Classification Accuracy for Breathing Abnormalities by Enhancing Dataset.

Sensors (Basel). 2021-10-12

[6]
Frequency-Modulated Continuous Wave Radar Respiratory Pattern Detection Technology Based on Multifeature.

J Healthc Eng. 2021

[7]
Non-Contact Monitoring and Classification of Breathing Pattern for the Supervision of People Infected by COVID-19.

Sensors (Basel). 2021-5-3

[8]
Gyrocardiography: A Review of the Definition, History, Waveform Description, and Applications.

Sensors (Basel). 2020-11-22

[9]
COVID-Net: a tailored deep convolutional neural network design for detection of COVID-19 cases from chest X-ray images.

Sci Rep. 2020-11-11

[10]
Forcecardiography: A Novel Technique to Measure Heart Mechanical Vibrations onto the Chest Wall.

Sensors (Basel). 2020-7-13

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索