Suppr超能文献

通过机器学习进行序列分析的血凝素和神经氨酸酶之间的序列匹配。

Sequence Matching between Hemagglutinin and Neuraminidase through Sequence Analysis Using Machine Learning.

机构信息

MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China.

出版信息

Viruses. 2022 Feb 25;14(3):469. doi: 10.3390/v14030469.

Abstract

To date, many experiments have revealed that the functional balance between hemagglutinin (HA) and neuraminidase (NA) plays a crucial role in viral mobility, production, and transmission. However, whether and how HA and NA maintain balance at the sequence level needs further investigation. Here, we applied principal component analysis and hierarchical clustering analysis on thousands of HA and NA sequences of A/H1N1 and A/H3N2. We discovered significant coevolution between HA and NA at the sequence level, which is closely related to the type of host species and virus epidemic years. Furthermore, we propose a sequence-to-sequence transformer model (S2STM), which mainly consists of an encoder and a decoder that adopts a multi-head attention mechanism for establishing the mapping relationship between HA and NA sequences. The training results reveal that the S2STM can effectively realize the "translation" from HA to NA or vice versa, thereby building a relationship network between them. Our work combines unsupervised and supervised machine learning methods to identify the sequence matching between HA and NA, which will advance our understanding of IAVs' evolution and also provide a novel idea for sequence analysis methods.

摘要

迄今为止,许多实验表明,血凝素(HA)和神经氨酸酶(NA)之间的功能平衡在病毒的移动性、产生和传播中起着至关重要的作用。然而,HA 和 NA 是否以及如何在序列水平上保持平衡仍需要进一步研究。在这里,我们对数千个 A/H1N1 和 A/H3N2 的 HA 和 NA 序列应用主成分分析和层次聚类分析。我们发现 HA 和 NA 在序列水平上存在显著的协同进化,这与宿主物种的类型和病毒流行年份密切相关。此外,我们提出了一个序列到序列的转换器模型(S2STM),它主要由一个编码器和解码器组成,采用多头注意力机制来建立 HA 和 NA 序列之间的映射关系。训练结果表明,S2STM 可以有效地实现从 HA 到 NA 或反之的“翻译”,从而建立它们之间的关系网络。我们的工作结合了无监督和监督机器学习方法来识别 HA 和 NA 之间的序列匹配,这将推进我们对 IAVs 进化的理解,也为序列分析方法提供了新的思路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ce8/8950662/0fdbe56e8969/viruses-14-00469-g001.jpg

相似文献

4
Computational study of interdependence between hemagglutinin and neuraminidase of pandemic 2009 H1N1.
IEEE Trans Nanobioscience. 2015 Mar;14(2):157-66. doi: 10.1109/TNB.2015.2406992. Epub 2015 Mar 2.
7
Molecular epidemiology and evolution of A(H1N1)pdm09 and H3N2 virus during winter 2012-2013 in Beijing, China.
Infect Genet Evol. 2014 Aug;26:228-40. doi: 10.1016/j.meegid.2014.05.034. Epub 2014 Jun 7.
8
Triplet entropy analysis of hemagglutinin and neuraminidase sequences measures influenza virus phylodynamics.
Gene. 2013 Oct 10;528(2):277-81. doi: 10.1016/j.gene.2013.06.060. Epub 2013 Jul 11.
10

引用本文的文献

2
Accurately identifying hemagglutinin using sequence information and machine learning methods.
Front Med (Lausanne). 2023 Oct 31;10:1281880. doi: 10.3389/fmed.2023.1281880. eCollection 2023.

本文引用的文献

1
Antigenicity prediction and vaccine recommendation of human influenza virus A (H3N2) using convolutional neural networks.
Hum Vaccin Immunother. 2020 Nov 1;16(11):2690-2708. doi: 10.1080/21645515.2020.1734397. Epub 2020 Aug 4.
2
Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation.
Science. 2020 Mar 13;367(6483):1260-1263. doi: 10.1126/science.abb2507. Epub 2020 Feb 19.
3
SciPy 1.0: fundamental algorithms for scientific computing in Python.
Nat Methods. 2020 Mar;17(3):261-272. doi: 10.1038/s41592-019-0686-2. Epub 2020 Feb 3.
4
Tempel: time-series mutation prediction of influenza A viruses via attention-based recurrent neural networks.
Bioinformatics. 2020 May 1;36(9):2697-2704. doi: 10.1093/bioinformatics/btaa050.
5
Influenza A Virus Hemagglutinin-Neuraminidase-Receptor Balance: Preserving Virus Motility.
Trends Microbiol. 2020 Jan;28(1):57-67. doi: 10.1016/j.tim.2019.08.010. Epub 2019 Oct 17.
7
Neuraminidase activity and specificity of influenza A virus are influenced by haemagglutinin-receptor binding.
Emerg Microbes Infect. 2019;8(1):327-338. doi: 10.1080/22221751.2019.1581034.
8
Influenza Virus Neuraminidase Structure and Functions.
Front Microbiol. 2019 Jan 29;10:39. doi: 10.3389/fmicb.2019.00039. eCollection 2019.
9
Mobility-Based Quantification of Multivalent Virus-Receptor Interactions: New Insights Into Influenza A Virus Binding Mode.
Nano Lett. 2019 Mar 13;19(3):1875-1882. doi: 10.1021/acs.nanolett.8b04969. Epub 2019 Feb 13.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验