Suppr超能文献

ARCANE-ROG:使用稳健图学习从单细胞数据重建癌症进化的算法。

ARCANE-ROG: Algorithm for reconstruction of cancer evolution from single-cell data using robust graph learning.

机构信息

SBILab, Department of ECE, Indraprastha Institute of Information Technology, New Delhi, India.

Laboratory Oncology Unit, Dr. B.R.A. IRCH, AIIMS, New Delhi, India.

出版信息

J Biomed Inform. 2022 May;129:104055. doi: 10.1016/j.jbi.2022.104055. Epub 2022 Mar 23.

Abstract

Tumor heterogeneity, marked by the presence of divergent clonal subpopulations of tumor cells, impedes the treatment response in cancer patients. Single-cell sequencing technology provides substantial prospects to gain an in-depth understanding of the cellular phenotypic variability driving tumor progression. A comprehensive insight into the intra-tumor heterogeneity may further assist in dealing with the treatment-resistant clones in cancer patients, thereby improving their overall survival. However, this task is hampered due to the challenges associated with the single-cell data, such as false positives, false negatives and missing bases, and the increase in their size. As a result, the computational cost of the existing methods increases, thereby limiting their usage. In this work, we propose a robust graph learning-based method, ARCANE-ROG (Algorithm for Reconstruction of CANcer Evolution via RObust Graph learning), for inferring clonal evolution from single-cell datasets. The first step of the proposed method is a joint framework of denoising with data imputation for the noisy and incomplete matrix while simultaneously learning an adjacency graph. Both the operations in the joint framework boost each other such that the overall performance of the denoising algorithm is improved. In the second step, an optimal number of clusters are identified via the Leiden method. In the last step, clonal evolution trees are inferred via a minimum spanning tree algorithm. The method has been benchmarked against a state-of-the-art method, RobustClone, using simulated datasets of varying sizes and five real datasets. The performance of our proposed method is found to be significantly superior (p-value < 0.05) in terms of reconstruction error, False Positive to False Negative (FPFN) ratio, tree distance error and V-measure compared to the other method. Overall, the proposed method is an improvement over the existing methods as it enhances cluster assignment and inference on clonal hierarchies.

摘要

肿瘤异质性,表现为肿瘤细胞存在不同的克隆亚群,阻碍了癌症患者的治疗反应。单细胞测序技术为深入了解驱动肿瘤进展的细胞表型变异性提供了广阔的前景。深入了解肿瘤内异质性可能有助于进一步处理癌症患者的耐药克隆,从而提高他们的总体生存率。然而,由于与单细胞数据相关的挑战,如假阳性、假阴性和缺失碱基,以及其大小的增加,这项任务受到了阻碍。因此,现有的方法的计算成本增加,从而限制了它们的使用。在这项工作中,我们提出了一种基于图学习的鲁棒方法 ARCANE-ROG(通过鲁棒图学习推断癌症进化的算法),用于从单细胞数据集中推断克隆进化。该方法的第一步是对噪声和不完整矩阵进行联合去噪和数据插补框架,同时学习邻接图。联合框架中的这两个操作相互促进,从而提高了去噪算法的整体性能。在第二步中,通过 Leiden 方法确定最佳聚类数量。在最后一步,通过最小生成树算法推断克隆进化树。该方法使用不同大小的模拟数据集和五个真实数据集与一种最先进的方法 RobustClone 进行了基准测试。与其他方法相比,我们提出的方法在重建误差、假阳性到假阴性(FPFN)比、树距离误差和 V 度量方面的性能显著提高(p 值<0.05)。总体而言,与现有的方法相比,该方法是一种改进,因为它增强了聚类分配和对克隆层次结构的推断。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验