Suppr超能文献

RobustClone:一种稳健的 PCA 方法,用于从单细胞测序数据中推断肿瘤克隆和进化。

RobustClone: a robust PCA method for tumor clone and evolution inference from single-cell sequencing data.

机构信息

NCMIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China.

School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.

出版信息

Bioinformatics. 2020 Jun 1;36(11):3299-3306. doi: 10.1093/bioinformatics/btaa172.

Abstract

MOTIVATION

Single-cell sequencing (SCS) data provide unprecedented insights into intratumoral heterogeneity. With SCS, we can better characterize clonal genotypes and reconstruct phylogenetic relationships of tumor cells/clones. However, SCS data are often error-prone, making their computational analysis challenging.

RESULTS

To infer the clonal evolution in tumor from the error-prone SCS data, we developed an efficient computational framework, termed RobustClone. It recovers the true genotypes of subclones based on the extended robust principal component analysis, a low-rank matrix decomposition method, and reconstructs the subclonal evolutionary tree. RobustClone is a model-free method, which can be applied to both single-cell single nucleotide variation (scSNV) and single-cell copy-number variation (scCNV) data. It is efficient and scalable to large-scale datasets. We conducted a set of systematic evaluations on simulated datasets and demonstrated that RobustClone outperforms state-of-the-art methods in large-scale data both in accuracy and efficiency. We further validated RobustClone on two scSNV and two scCNV datasets and demonstrated that RobustClone could recover genotype matrix and infer the subclonal evolution tree accurately under various scenarios. In particular, RobustClone revealed the spatial progression patterns of subclonal evolution on the large-scale 10X Genomics scCNV breast cancer dataset.

AVAILABILITY AND IMPLEMENTATION

RobustClone software is available at https://github.com/ucasdp/RobustClone.

CONTACT

lwan@amss.ac.cn or maliang@ioz.ac.cn.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

单细胞测序 (SCS) 数据为肿瘤内异质性提供了前所未有的深入了解。通过 SCS,我们可以更好地描述克隆基因型,并重建肿瘤细胞/克隆的系统发育关系。然而,SCS 数据通常容易出错,这使得它们的计算分析具有挑战性。

结果

为了从易错的 SCS 数据中推断肿瘤中的克隆进化,我们开发了一种高效的计算框架,称为 RobustClone。它基于扩展的稳健主成分分析、低秩矩阵分解方法,恢复亚克隆的真实基因型,并重建亚克隆进化树。RobustClone 是一种无模型方法,可应用于单细胞单核苷酸变异 (scSNV) 和单细胞拷贝数变异 (scCNV) 数据。它对大规模数据集高效且可扩展。我们在模拟数据集上进行了一系列系统评估,并证明 RobustClone 在大规模数据中的准确性和效率方面均优于最先进的方法。我们进一步在两个 scSNV 和两个 scCNV 数据集上验证了 RobustClone,并证明 RobustClone 可以在各种情况下准确地恢复基因型矩阵并推断亚克隆进化树。特别是,RobustClone 揭示了大规模 10X Genomics scCNV 乳腺癌数据集上亚克隆进化的空间进展模式。

可用性和实现

RobustClone 软件可在 https://github.com/ucasdp/RobustClone 上获得。

联系方式

lwan@amss.ac.cnmaliang@ioz.ac.cn

补充信息

补充数据可在生物信息学在线获得。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验