Suppr超能文献

基于深度特征融合的脑电图儿童癫痫综合征分类。

Deep feature fusion based childhood epilepsy syndrome classification from electroencephalogram.

机构信息

Machine Learning and I-health International Cooperation Base of Zhejiang Province, Hangzhou Dianzi University, 310018, China; Artificial Intelligence Institute, Hangzhou Dianzi University, Zhejiang, 310018, China.

Machine Learning and I-health International Cooperation Base of Zhejiang Province, Hangzhou Dianzi University, 310018, China; Artificial Intelligence Institute, Hangzhou Dianzi University, Zhejiang, 310018, China; Research Center for Intelligent Sensing, Zhejiang Lab, Hangzhou, Zhejiang, 311100, China.

出版信息

Neural Netw. 2022 Jun;150:313-325. doi: 10.1016/j.neunet.2022.03.014. Epub 2022 Mar 15.

Abstract

Accurate classification of the children's epilepsy syndrome is vital to the diagnosis and treatment of epilepsy. But existing literature mainly focuses on seizure detection and few attention has been paid to the children's epilepsy syndrome classification. In this paper, we present a study on the classification of two most common epilepsy syndromes: the benign childhood epilepsy with centro-temporal spikes (BECT) and the infantile spasms (also known as the WEST syndrome), recorded from the Children's Hospital, Zhejiang University School of Medicine (CHZU). A novel feature fusion model based on the deep transfer learning and the conventional time-frequency representation of the scalp electroencephalogram (EEG) is developed for the epilepsy syndrome characterization. A fully connected network is constructed for the feature learning and syndrome classification. Experiments on the CHZU database show that the proposed algorithm can offer an average of 92.35% classification accuracy on the BECT and WEST syndromes and their corresponding normal cases.

摘要

准确的儿童癫痫综合征分类对于癫痫的诊断和治疗至关重要。但是现有的文献主要集中在癫痫发作的检测上,很少关注儿童癫痫综合征的分类。在本文中,我们研究了两种最常见的癫痫综合征的分类:具有中央颞区棘波的良性儿童癫痫(BECT)和婴儿痉挛症(也称为 WEST 综合征),这些数据是从浙江大学医学院附属儿童医院(CHZU)记录的。我们提出了一种新的特征融合模型,该模型基于深度迁移学习和头皮脑电图(EEG)的常规时频表示,用于癫痫综合征特征描述。我们构建了一个全连接网络来进行特征学习和综合征分类。在 CHZU 数据库上的实验表明,所提出的算法可以在 BECT 和 WEST 综合征及其相应的正常病例上提供平均 92.35%的分类准确率。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验