Suppr超能文献

通过肌肉速度恢复循环比较小鼠和人骨骼肌纤维的兴奋性特性。

Excitability properties of mouse and human skeletal muscle fibres compared by muscle velocity recovery cycles.

机构信息

Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom; AGE Research Group, NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, United Kingdom.

Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom.

出版信息

Neuromuscul Disord. 2022 Apr;32(4):347-357. doi: 10.1016/j.nmd.2022.02.011. Epub 2022 Feb 26.

Abstract

Mouse models of skeletal muscle channelopathies are not phenocopies of human disease. In some cases (e.g. Myotonia Congenita) the phenotype is much more severe, whilst in others (e.g. Hypokalaemic periodic paralysis) rodent physiology is protective. This suggests a species' difference in muscle excitability properties. In humans these can be measured indirectly by the post-impulse changes in conduction velocity, using Muscle Velocity Recovery Cycles (MVRCs). We performed MVRCs in mice and compared their muscle excitability properties with humans. Mouse Tibialis Anterior MVRCs (n = 70) have only one phase of supernormality (increased conduction velocity), which is smaller in magnitude (p = 9 × 10), and shorter in duration (p = 3 × 10) than human (n = 26). This abbreviated supernormality is followed by a period of late subnormality (reduced velocity) in mice, which overlaps in time with the late supernormality seen in human MVRCs. The period of late subnormality suggests increased t-tubule Na/K-pump activity. The subnormal phase in mice was converted to supernormality by blocking ClC-1 chloride channels, suggesting relatively higher chloride conductance in skeletal muscle. Our findings help explain discrepancies in phenotype between mice and humans with skeletal muscle channelopathies and potentially other neuromuscular disorders. MVRCs are a valuable new tool to compare in vivo muscle membrane properties between species and will allow further dissection of the molecular mechanisms regulating muscle excitability.

摘要

骨骼肌通道病的小鼠模型与人类疾病并不完全相同。在某些情况下(例如先天性肌强直症),表型更为严重,而在其他情况下(例如低钾周期性麻痹症),啮齿动物的生理学具有保护作用。这表明物种间肌肉兴奋性特性存在差异。在人类中,这些可以通过肌肉速度恢复循环(MVRC)来间接测量,即冲动后的传导速度变化。我们在小鼠中进行了 MVRC 实验,并将其肌肉兴奋性特性与人类进行了比较。小鼠胫骨前肌 MVRC(n=70)只有一个超射阶段(传导速度增加),其幅度较小(p=9×10),持续时间较短(p=3×10),明显小于人类(n=26)。这种短暂的超射之后,小鼠会出现一段晚期亚射阶段(速度降低),这与人类 MVRC 中的晚期超射阶段时间重叠。晚期亚射阶段表明 T 管 Na/K 泵的活性增加。通过阻断 ClC-1 氯离子通道,小鼠中的亚射阶段被转化为超射阶段,这表明骨骼肌中的氯离子电导相对较高。我们的研究结果有助于解释骨骼肌通道病和其他潜在神经肌肉疾病中,小鼠和人类表型之间的差异。MVRC 是一种新的有用工具,可用于比较物种间的体内肌肉膜特性,并进一步解析调节肌肉兴奋性的分子机制。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8fe7/7614892/bde181b0148c/EMS177441-f001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验