Graduate Program in Ecology and Evolution, Rutgers University, New Brunswick, NJ 08901, USA.
Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, South Korea.
Semin Cell Dev Biol. 2023 Jan 30;134:4-13. doi: 10.1016/j.semcdb.2022.03.007. Epub 2022 Mar 23.
Extremophiles have always garnered great interest because of their exotic lifestyles and ability to thrive at the physical limits of life. In hot springs environments, the Cyanidiophyceae red algae are the only photosynthetic eukaryotes able to live under extremely low pH (0-5) and relatively high temperature (35ºC to 63ºC). These extremophiles live as biofilms in the springs, inhabit acid soils near the hot springs, and form endolithic populations in the surrounding rocks. Cyanidiophyceae represent a remarkable source of knowledge about the evolution of extremophilic lifestyles and their genomes encode specialized enzymes that have applied uses. Here we review the evolutionary origin, taxonomy, genome biology, industrial applications, and use of Cyanidiophyceae as genetic models. Currently, Cyanidiophyceae comprise a single order (Cyanidiales), three families, four genera, and nine species, including the well-known Cyanidioschyzon merolae and Galdieria sulphuraria. These algae have small, gene-rich genomes that are analogous to those of prokaryotes they live and compete with. There are few spliceosomal introns and evidence exists for horizontal gene transfer as a driver of local adaptation to gain access to external fixed carbon and to extrude toxic metals. Cyanidiophyceae offer a variety of commercial opportunities such as phytoremediation to detoxify contaminated soils or waters and exploitation of their mixotrophic lifestyles to support the efficient production of bioproducts such as phycocyanin and floridosides. In terms of exobiology, Cyanidiophyceae are an ideal model system for understanding the evolutionary effects of foreign gene acquisition and the interactions between different organisms inhabiting the same harsh environment on the early Earth. Finally, we describe ongoing research with C. merolae genetics and summarize the unique insights they offer to the understanding of algal biology and evolution.
嗜极生物因其奇特的生活方式和在生命物理极限下茁壮成长的能力而一直备受关注。在温泉环境中,蓝藻门红藻是唯一能够在极低 pH 值(0-5)和相对较高温度(35°C 至 63°C)下生存的光合作用真核生物。这些嗜极生物作为生物膜生活在温泉中,栖息在温泉附近的酸性土壤中,并在周围的岩石中形成内生种群。蓝藻门是了解极端生活方式进化及其基因组编码具有应用价值的特殊酶的重要来源。在这里,我们回顾了蓝藻门的进化起源、分类学、基因组生物学、工业应用以及作为遗传模型的用途。目前,蓝藻门包括一个目(蓝藻目)、三个科、四个属和九个种,其中包括著名的 Cyanidioschyzon merolae 和 Galdieria sulphuraria。这些藻类的基因组较小,但基因丰富,与它们所生活和竞争的原核生物类似。蓝藻门的内含子很少,并且存在水平基因转移的证据,这是一种获得外部固定碳和排出有毒金属的局部适应的驱动力。蓝藻门提供了多种商业机会,例如植物修复以解毒受污染的土壤或水,以及利用其混养生活方式来支持生物产品如藻蓝蛋白和 floridosides 的高效生产。就外星生物学而言,蓝藻门是了解外来基因获得的进化影响以及栖息在同一恶劣环境中的不同生物之间相互作用的理想模型系统。最后,我们描述了正在进行的 C. merolae 遗传学研究,并总结了它们为理解藻类生物学和进化提供的独特见解。