School of Computer Science and Technology, Anhui University, China.
Key Laboratory of Intelligent Computing and Signal Processing of Ministry of Education, Anhui University, China; School of Computer Science and Technology, Anhui University, China.
Comput Med Imaging Graph. 2022 Apr;97:102054. doi: 10.1016/j.compmedimag.2022.102054. Epub 2022 Mar 12.
Accurate segmentation of cardiac substructures in multi-modality heart images is an important prerequisite for the diagnosis and treatment of cardiovascular diseases. However, the segmentation of cardiac images remains a challenging task due to (1) the interference of multiple targets, (2) the imbalance of sample size. Therefore, in this paper, we propose a novel two-stage segmentation network with feature aggregation and multi-level attention mechanism (TSFM-Net) to comprehensively solve these challenges. Firstly, in order to improve the effectiveness of multi-target features, we adopt the encoder-decoder structure as the backbone segmentation framework and design a feature aggregation module (FAM) to realize the multi-level feature representation (Stage1). Secondly, because the segmentation results obtained from Stage1 are limited to the decoding of single scale feature maps, we design a multi-level attention mechanism (MLAM) to assign more attention to the multiple targets, so as to get multi-level attention maps. We fuse these attention maps and concatenate the output of Stage1 to carry out the second segmentation to get the final segmentation result (Stage2). The proposed method has better segmentation performance and balance on 2017 MM-WHS multi-modality whole heart images than the state-of-the-art methods, which demonstrates the feasibility of TSFM-Net for accurate segmentation of heart images.
准确分割多模态心脏图像中的心脏亚结构是心血管疾病诊断和治疗的重要前提。然而,由于(1)多个目标的干扰,(2)样本量的不平衡,心脏图像的分割仍然是一项具有挑战性的任务。因此,在本文中,我们提出了一种具有特征聚合和多层次注意力机制的新型两阶段分割网络(TSFM-Net),以全面解决这些挑战。首先,为了提高多目标特征的有效性,我们采用编码器-解码器结构作为骨干分割框架,并设计了一个特征聚合模块(FAM)来实现多层次特征表示(第 1 阶段)。其次,由于第 1 阶段得到的分割结果仅限于单尺度特征图的解码,我们设计了一个多层次注意力机制(MLAM)来为多个目标分配更多的注意力,从而得到多层次的注意力图。我们融合这些注意力图,并将第 1 阶段的输出进行串联,进行第二次分割,得到最终的分割结果(第 2 阶段)。与最先进的方法相比,所提出的方法在 2017 年 MM-WHS 多模态全心脏图像上具有更好的分割性能和平衡,这证明了 TSFM-Net 用于心脏图像准确分割的可行性。