Baltic Sea Centre, Stockholm University, Stockholm, Sweden.
Tvärminne Zoological Station, University of Helsinki, Hanko, Finland.
Glob Chang Biol. 2022 Jul;28(14):4308-4322. doi: 10.1111/gcb.16177. Epub 2022 Apr 12.
Coastal methane (CH ) emissions dominate the global ocean CH budget and can offset the "blue carbon" storage capacity of vegetated coastal ecosystems. However, current estimates lack systematic, high-resolution, and long-term data from these intrinsically heterogeneous environments, making coastal budgets sensitive to statistical assumptions and uncertainties. Using continuous CH concentrations, δ C-CH values, and CH sea-air fluxes across four seasons in three globally pervasive coastal habitats, we show that the CH distribution is spatially patchy over meter-scales and highly variable in time. Areas with mixed vegetation, macroalgae, and their surrounding sediments exhibited a spatiotemporal variability of surface water CH concentrations ranging two orders of magnitude (i.e., 6-460 nM CH ) with habitat-specific seasonal and diurnal patterns. We observed (1) δ C-CH signatures that revealed habitat-specific CH production and consumption pathways, (2) daily peak concentration events that could change >100% within hours across all habitats, and (3) a high thermal sensitivity of the CH distribution signified by apparent activation energies of ~1 eV that drove seasonal changes. Bootstrapping simulations show that scaling the CH distribution from few samples involves large errors, and that ~50 concentration samples per day are needed to resolve the scale and drivers of the natural variability and improve the certainty of flux calculations by up to 70%. Finally, we identify northern temperate coastal habitats with mixed vegetation and macroalgae as understudied but seasonally relevant atmospheric CH sources (i.e., releasing ≥ 100 μmol CH m day in summer). Due to the large spatial and temporal heterogeneity of coastal environments, high-resolution measurements will improve the reliability of CH estimates and confine the habitat-specific contribution to regional and global CH budgets.
沿海甲烷 (CH ) 排放主导着全球海洋 CH 预算,并且可以抵消植被沿海生态系统的“蓝碳”储存能力。然而,目前的估计缺乏来自这些固有非均相环境的系统的、高分辨率的和长期的数据,使得沿海预算对统计假设和不确定性敏感。利用连续的 CH 浓度、δ C-CH 值和四个季节穿过三种全球普遍存在的沿海生境的 CH 海气通量,我们表明 CH 分布在米级尺度上是空间斑块状的,并且时间上高度可变。具有混合植被、大型藻类及其周围沉积物的区域表现出地表水 CH 浓度的时空变异性,范围跨越两个数量级(即 6-460 nM CH ),具有特定于生境的季节性和日变化模式。我们观察到:(1)δ C-CH 特征揭示了特定于生境的 CH 产生和消耗途径;(2)每日峰值浓度事件,在所有生境中,在几小时内可以变化 >100%;(3)CH 分布的高温度敏感性,其表观活化能约为 1 eV,驱动季节性变化。自举模拟表明,从少数样本推断 CH 分布会涉及很大的误差,并且每天需要约 50 个浓度样本来解决自然变异性的尺度和驱动因素,并将通量计算的确定性提高多达 70%。最后,我们确定了具有混合植被和大型藻类的北温带沿海生境是研究不足但季节性相关的大气 CH 源(即,在夏季释放≥100 μmol CH m -2 day -1 )。由于沿海环境的空间和时间异质性很大,高分辨率测量将提高 CH 估计的可靠性,并将特定于生境的贡献限制在区域和全球 CH 预算内。