Suppr超能文献

甲烷通量在微生物到生态系统尺度上表现出一致的温度依赖性。

Methane fluxes show consistent temperature dependence across microbial to ecosystem scales.

机构信息

Environment and Sustainability Institute, University of Exeter, Penryn, Cornwall, TR10 9EZ. UK.

Department of Biological Sciences, Macquarie University, Sydney, NSW 2109, Australia.

出版信息

Nature. 2014 Mar 27;507(7493):488-91. doi: 10.1038/nature13164. Epub 2014 Mar 19.

Abstract

Methane (CH4) is an important greenhouse gas because it has 25 times the global warming potential of carbon dioxide (CO2) by mass over a century. Recent calculations suggest that atmospheric CH4 emissions have been responsible for approximately 20% of Earth's warming since pre-industrial times. Understanding how CH4 emissions from ecosystems will respond to expected increases in global temperature is therefore fundamental to predicting whether the carbon cycle will mitigate or accelerate climate change. Methanogenesis is the terminal step in the remineralization of organic matter and is carried out by strictly anaerobic Archaea. Like most other forms of metabolism, methanogenesis is temperature-dependent. However, it is not yet known how this physiological response combines with other biotic processes (for example, methanotrophy, substrate supply, microbial community composition) and abiotic processes (for example, water-table depth) to determine the temperature dependence of ecosystem-level CH4 emissions. It is also not known whether CH4 emissions at the ecosystem level have a fundamentally different temperature dependence than other key fluxes in the carbon cycle, such as photosynthesis and respiration. Here we use meta-analyses to show that seasonal variations in CH4 emissions from a wide range of ecosystems exhibit an average temperature dependence similar to that of CH4 production derived from pure cultures of methanogens and anaerobic microbial communities. This average temperature dependence (0.96 electron volts (eV)), which corresponds to a 57-fold increase between 0 and 30°C, is considerably higher than previously observed for respiration (approximately 0.65 eV) and photosynthesis (approximately 0.3 eV). As a result, we show that both the emission of CH4 and the ratio of CH4 to CO2 emissions increase markedly with seasonal increases in temperature. Our findings suggest that global warming may have a large impact on the relative contributions of CO2 and CH4 to total greenhouse gas emissions from aquatic ecosystems, terrestrial wetlands and rice paddies.

摘要

甲烷(CH4)是一种重要的温室气体,因为它在一个世纪内的全球变暖潜能是二氧化碳(CO2)的 25 倍。最近的计算表明,自工业化前以来,大气 CH4 排放约占地球变暖的 20%。因此,了解生态系统中 CH4 排放将如何应对全球温度的预期升高,对于预测碳循环是否会减缓或加速气候变化至关重要。产甲烷作用是有机物质再矿化的最后一步,由严格的厌氧古菌进行。与大多数其他形式的新陈代谢一样,产甲烷作用受温度影响。然而,目前还不清楚这种生理反应如何与其他生物过程(例如甲烷氧化作用、基质供应、微生物群落组成)和非生物过程(例如地下水位深度)相结合,从而确定生态系统水平 CH4 排放的温度依赖性。也不知道生态系统水平的 CH4 排放是否与碳循环中的其他关键通量(例如光合作用和呼吸作用)具有根本不同的温度依赖性。在这里,我们使用荟萃分析表明,来自广泛生态系统的 CH4 排放的季节性变化表现出与从产甲烷菌和厌氧微生物群落的纯培养物中得出的 CH4 产生相似的平均温度依赖性。这种平均温度依赖性(0.96 电子伏特(eV)),对应于 0 到 30°C 之间的 57 倍增加,远高于先前观察到的呼吸作用(约 0.65 eV)和光合作用(约 0.3 eV)。因此,我们表明,随着温度的季节性升高,CH4 的排放和 CH4 与 CO2 排放的比例都会明显增加。我们的研究结果表明,全球变暖可能会对水生生态系统、陆地湿地和稻田中 CO2 和 CH4 对温室气体总排放的相对贡献产生重大影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验